giải phương trình chứa ẩn ở mẫu
10/3-7x+2/6x+8=2+3x+1/4x+12
giải phương trình chứa ẩn ở mẫu sau:
\(\dfrac{3x^2+7x-10}{x}=0\)
\(\dfrac{3x^2+7x-10}{x}=0\left(x\ne0\right)\)
\(\Leftrightarrow3x^2+7x-10=0\)
\(\Leftrightarrow3x^2-3x+10x-10=0\)
\(\Leftrightarrow3x\left(x-1\right)+10\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(3x+10\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\left(n\right)\\x=-\dfrac{10}{3}\left(n\right)\end{matrix}\right.\)
Giải phương trình chứa ẩn ở mẫu sau:
2 x − 1 x 2 + 4 x − 5 + x − 2 x 2 − 10 x + 9 = 3 x − 12 x 2 − 4 x − 45 .
Giải phương trình chứa ẩn ở mẫu:
a x-1/x+3 - x/x-3 = 7x-3/9-x2
\(\frac{x-1}{x+3}-\frac{x}{x-3}=\frac{7x-3}{9-x^2}\)ĐK : \(x\ne\pm3\)
\(\Leftrightarrow\frac{x-1}{x+3}+\frac{x}{3-x}=\frac{7x-3}{9-x^2}\)
\(\Leftrightarrow\frac{\left(x-1\right)\left(3-x\right)+x\left(x+3\right)}{\left(x+3\right)\left(3-x\right)}=\frac{7x-3}{\left(3-x\right)\left(x+3\right)}\)
\(\Rightarrow3x-x^2-3+x+x^2+3x=7x-3\)
\(\Leftrightarrow7x-3=7x-3\Leftrightarrow0x=0\)
Vậy phương trình có vô số nghiệm
Trả lời:
\(\frac{x-1}{x+3}-\frac{x}{x-3}=\frac{7x-3}{9-x^2}\)\(\left(ĐKXĐ:x\ne\pm3\right)\)
\(\Leftrightarrow\frac{x-1}{x+3}-\frac{x}{x-3}=\frac{3-7x}{x^2-9}\)
\(\Leftrightarrow\frac{\left(x-1\right)\left(x-3\right)}{x^2-9}-\frac{x\left(x+3\right)}{x^2-9}=\frac{3-7x}{x^2-9}\)
\(\Rightarrow x^2-3x-x+3-\left(x^2+3x\right)=3-7x\)
\(\Leftrightarrow x^2-4x+3-x^2-3x=3-7x\)
\(\Leftrightarrow3-7x=3-7x\)
\(\Leftrightarrow-7x+7x=3-3\)
\(\Leftrightarrow0x=0\)( luôn thỏa mãn )
Vậy \(S=ℝ\)với \(x\ne\pm3\)
Giải phương trình chứa ẩn ở mẫu:
1/(x^2+3x+2) + 1/(x^2+5x+ 6) = 2/15
Giai phương trình sau:
a,\(x^2+3x-10=0\) b,\(3x^2-7x+1=0\)
c,\(3x^2-7x+8=0\) d,\(4x^2-12x+9=0\)
e,\(3x^2+7x+2=0\) h,\(x^2-4x+1=0\)
i,\(2x^2-6x+1=0\) j, \(3x^2+4x-4=0\)
a) Ta có: \(x^2+3x-10=0\)
\(\Leftrightarrow x^2+5x-2x-10=0\)
\(\Leftrightarrow x\left(x+5\right)-2\left(x+5\right)=0\)
\(\Leftrightarrow\left(x+5\right)\left(x-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+5=0\\x-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-5\\x=2\end{matrix}\right.\)
Vậy: S={-5;2}
b) Ta có: \(3x^2-7x+1=0\)
\(\Leftrightarrow3\left(x^2-\dfrac{7}{3}x+\dfrac{1}{3}\right)=0\)
mà 3>0
nên \(x^2-\dfrac{7}{3}x+\dfrac{1}{3}=0\)
\(\Leftrightarrow x^2-2\cdot x\cdot\dfrac{7}{6}+\dfrac{49}{36}-\dfrac{37}{36}=0\)
\(\Leftrightarrow\left(x-\dfrac{7}{6}\right)^2=\dfrac{37}{36}\)
\(\Leftrightarrow\left[{}\begin{matrix}x-\dfrac{7}{6}=\dfrac{\sqrt{37}}{6}\\x-\dfrac{7}{6}=-\dfrac{\sqrt{37}}{6}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\sqrt{37}+7}{6}\\x=\dfrac{-\sqrt{37}+7}{6}\end{matrix}\right.\)
Vậy: \(S=\left\{\dfrac{\sqrt{37}+7}{6};\dfrac{-\sqrt{37}+7}{6}\right\}\)
c) Ta có: \(3x^2-7x+8=0\)
\(\Leftrightarrow3\left(x^2-\dfrac{7}{3}x+\dfrac{8}{3}\right)=0\)
mà 3>0
nên \(x^2-\dfrac{7}{3}x+\dfrac{8}{3}=0\)
\(\Leftrightarrow x^2-2\cdot x\cdot\dfrac{7}{6}+\dfrac{49}{36}+\dfrac{47}{36}=0\)
\(\Leftrightarrow\left(x-\dfrac{7}{6}\right)^2=-\dfrac{47}{36}\)(vô lý)
Vậy: \(x\in\varnothing\)
m.n ơi giúp mk vs
Gpt: 8x²/3(1-4x²) = 2x/6x-3 - 1+8x/4+8x ( phương trình chứa ẩn ở mẫu)
Phương trình chứa ẩn ở mẫu
Giai các phương trình sau
1. \(\frac{7x-3}{x-1}=\frac{2}{3}\)
2. \(\frac{5x-1}{3x+2}=\frac{5x-7}{3x-1}\)
3. \(\frac{1-x}{x+1}+3=\frac{2x+3}{x+1}\)
4. \(\frac{1-6x}{x-2}+\frac{9x+4}{x+2}=\frac{x\left(3x-2\right)+1}{x^2-4}\)
5. \(\frac{3x+2}{3x-2}-\frac{6}{2+3x}=\frac{9x^2}{9x^2-4}\)
6. \(1+\frac{1}{x+2}=\frac{12}{8-x^3}\)
\(1.\frac{7x-3}{x-1}=\frac{2}{3}\) ( \(x\ne1\))
\(\Leftrightarrow\frac{3\left(7x-1\right)}{3\left(x-1\right)}=\frac{2\left(x-1\right)}{3\left(x-1\right)}\)
\(\Rightarrow3\left(7x-3\right)=2\left(x-1\right)\)
\(\Leftrightarrow21x-9=2x-2\)
\(\Leftrightarrow19x=7\)
\(\Leftrightarrow x=\frac{7}{19}\)
\(2.\frac{5x-1}{3x+2}=\frac{5x-7}{3x-1}\)
\(\Leftrightarrow\frac{\left(5x-1\right)\left(3x-1\right)}{\left(3x+2\right)\left(3x-1\right)}=\frac{\left(5x-7\right)\left(3x+2\right)}{\left(3x-1\right)\left(3x+2\right)}\)
\(\Rightarrow\left(5x-1\right)\left(3x-1\right)=\left(5x-7\right)\left(3x+2\right)\)
\(\Leftrightarrow15x^2-5x-3x+1=15x^2+10x-21x-14\)
\(\Leftrightarrow15x^2-8x+1=15x^2-11x-14\)
\(\Leftrightarrow\left(15x^2-15x^2\right)+\left(-8x+11x\right)=-14-1\)
\(\Leftrightarrow3x=-15\)
\(\Leftrightarrow x=-5\)
\(3.\frac{1-x}{x+1}+3=\frac{2x+3}{3x-1}\)
\(\Leftrightarrow\frac{\left(1-x\right)\left(3x-1\right)}{\left(x+1\right)\left(3x-1\right)}+\frac{3\left(x+1\right)\left(3x-1\right)}{\left(x+1\right)\left(3x-1\right)}=\frac{\left(2x+3\right)\left(x+1\right)}{\left(3x-1\right)\left(0+1\right)}\)
\(\Rightarrow\left(1-x\right)\left(3x-1\right)+3\left(x+1\right)\left(3x-1\right)=\left(2x+3\right)\left(x+1\right)\)
\(\Leftrightarrow3x-1-3x^2+x+3\left(3x^2-x+3x-1\right)=2x^2+2x+3x+3\)
\(\Leftrightarrow3x-1-3x^2+x+9x^2-3x+9x-3=2x^2+2x+3x+3\)
\(\Leftrightarrow6x^2+10x-4=2x^2+5x+3\)
\(\Leftrightarrow\left(6x^2-2x^2\right)+\left(10x-5x\right)=7\)
\(\Leftrightarrow4x^2+5x-7=0\)
\(\Leftrightarrow\left(2x\right)^2+4x.\frac{5}{4}+\frac{16}{25}+\frac{191}{25}=0\)
\(\Leftrightarrow\left(2x+\frac{5}{4}\right)^2-\frac{191}{25}=0\)
\(\left(2x+\frac{5}{4}\right)^2>0\)
\(\Rightarrow\left(2x+\frac{5}{4}\right)^2+\frac{191}{25}>0\)
=> PT vô nghiệm
\(4.\frac{1-6x}{x-2}+\frac{9x+4}{x+2}=\frac{x\left(3x-2\right)+1}{x^2-4}\)
\(\Leftrightarrow\frac{\left(1-6x\right)\left(x+2\right)}{x^2-4}+\frac{\left(9x+4\right)\left(x-2\right)}{x^2-4}=\frac{2\left(3x-2\right)+1}{x^2-4}\)
\(\Rightarrow\left(1-6x\right)\left(x+2\right)+\left(9x+4\right)\left(x-2\right)=3\left(3x-2\right)+1\)
\(\Leftrightarrow x+2-6x^2-12x+9x^2-18x+4x-8=3x^2-2x+1\)
\(\Leftrightarrow3x^2-25x-6=3x^2-2x+1\)
\(\Leftrightarrow\left(3x^2-3x^2\right)+\left(-25x+2x\right)+\left(-6-1\right)=0\)
\(\Leftrightarrow-23x-7=0\)
\(\Leftrightarrow-23x=7\)
\(\Leftrightarrow x=\frac{-7}{23}\)
\(5.\frac{3x+2}{3x-2}-\frac{6}{2+3x}=\frac{9x^2}{9x^2-4}\)
\(\Leftrightarrow\frac{\left(3x+2\right)^2}{9x^2-4}-\frac{6\left(3x-2\right)}{9x^2-4}=\frac{9x^2}{9x^2-4}\)
\(\Rightarrow\left(3x+2\right)^2-6\left(3x-2\right)=9x^2\)
\(\Leftrightarrow9x^2+12x+4-18x+12=9x^2\)
\(\Leftrightarrow\left(9x^2-9x^2\right)+\left(12x-18x\right)+\left(4+12\right)=0\)
\(\Leftrightarrow-6x+16=0\)
\(\Leftrightarrow-6x=-16\)
\(\Leftrightarrow x=\frac{16}{6}\)
\(6.1+\frac{1}{x+2}=\frac{12}{8-x^3}\)
\(\Leftrightarrow\frac{\left(x+2\right)\left(8-x^3\right)}{\left(x+2\right)\left(8-x^3\right)}+\frac{1\left(8-x^3\right)}{\left(x+2\right)\left(8-x^3\right)}=\frac{12\left(x+2\right)}{\left(x+2\right)\left(8-x^3\right)}\)
\(\Rightarrow\left(x+2\right)\left(8-x^3\right)+1\left(8-x^3\right)=12\left(x+2\right)\)
\(\Leftrightarrow8x+x^4+16+2x^3+8-x^3=12x+24\)
\(\Leftrightarrow x^4+\left(2x^3-x^3\right)+\left(8x-12x\right)+\left(16-24\right)=0\)
\(\Leftrightarrow x^4+x^3-4x-8=0\)
\(\Leftrightarrow\left(x^4-4x\right)+\left(x^3-8\right)=0\)
Đến đấy mk tắc r xl bạn nhé
Giải phương trình chứa ẩn ở mẫu sau:
1 x 2 + 3 x + 2 − 3 x 2 − x − 2 = − 1 x 2 − 4 .
Mẫu thức chung ( x + 1 ) x + 2 x - 2 . Từ đó ta được x = -7
Giải phương trình sau :( phương trình chứa ẩn ở mẫu )
\(\frac{1}{x^2+5x+6}+\frac{1}{x^2+7x+12}+\frac{1}{x^2+9x+20}+\frac{1}{x^2+11x+30}=\frac{1}{8}\)
\(\frac{1}{x^2+5x+6}+\frac{1}{x^2+7x+12}+\frac{1}{x^2+9x+20}+\frac{1}{x^2+11x+30}=\frac{1}{8}\) (ĐKXĐ: x \(\ne\) -2; x \(\ne\) -3; x \(\ne\) -4; x \(\ne\) -5; x \(\ne\) -6)
\(\Leftrightarrow\) \(\frac{1}{x^2+2x+3x+6}+\frac{1}{x^2+3x+4x+12}+\frac{1}{x^2+4x+5x+20}+\frac{1}{x^2+5x+6x+30}=\frac{1}{8}\)
\(\Leftrightarrow\) \(\frac{1}{x\left(x+2\right)+3\left(x+2\right)}+\frac{1}{x\left(x+3\right)+4\left(x+3\right)}+\frac{1}{x\left(x+4\right)+5\left(x+4\right)}+\frac{1}{x\left(x+5\right)+6\left(x+5\right)}=\frac{1}{8}\)
\(\Leftrightarrow\) \(\frac{1}{\left(x+2\right)\left(x+3\right)}+\frac{1}{\left(x+3\right)\left(x+4\right)}+\frac{1}{\left(x+4\right)\left(x+5\right)}+\frac{1}{\left(x+5\right)\left(x+6\right)}=\frac{1}{8}\)
\(\Leftrightarrow\) \(\frac{1}{x+2}-\frac{1}{x+3}+\frac{1}{x+3}-\frac{1}{x+4}+\frac{1}{x+4}-\frac{1}{x+5}+\frac{1}{x+5}-\frac{1}{x+6}=\frac{1}{8}\)
\(\Leftrightarrow\) \(\frac{1}{x+2}-\frac{1}{x+6}=\frac{1}{8}\)
\(\Leftrightarrow\) \(\frac{x+6-x-2}{\left(x+2\right)\left(x+6\right)}=\frac{1}{8}\)
\(\Leftrightarrow\) \(\frac{4}{\left(x+2\right)\left(x+6\right)}=\frac{1}{8}\)
\(\Leftrightarrow\) \(\frac{4}{\left(x+2\right)\left(x+6\right)}=\frac{4}{32}\)
\(\Rightarrow\) (x + 2)(x + 6) = 32
\(\Leftrightarrow\) (x + 2)(x + 6) - 32 = 0
\(\Leftrightarrow\) x2 + 6x + 2x + 12 - 32 = 0
\(\Leftrightarrow\) x2 + 8x - 20 = 0
\(\Leftrightarrow\) x2 + 8x + 16 - 36 = 0
\(\Leftrightarrow\) (x + 4)2 - 36 = 0
\(\Leftrightarrow\) (x + 4 - 6)(x + 4 + 6) = 0
\(\Leftrightarrow\) (x - 2)(x + 10) = 0
\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\x+10=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\left(TMĐK\right)\\x=-10\left(TMĐK\right)\end{matrix}\right.\)
Vậy S = {2; -10}
Chúc bn học tốt!!