Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
khá Duy
Xem chi tiết
Akai Haruma
7 tháng 6 2021 lúc 0:45

Lời giải:

Gọi giao của $BO$ và $AC$ là $H$

Vì $BA=BC; OA=OC$ nên $BO$ là trung trực của $AC$

$\Rightarrow BO$ vuông góc với $AC$ tại trung điểm $H$ của $AC$.

Do đó $HO$ là đường trung bình ứng với cạnh $CD$ của tam giác $ACD$

$\Rightarrow HO=2$

$BH=BO-HO=R-2$
Theo định lý Pitago:

$BC^2-BH^2=CH^2=CO^2-HO^2$

$\Leftrightarrow (4\sqrt{3})^2-(R-2)^2=R^2-2^2$

$\Leftrightarrow 48-(R-2)^2=R^2-4$

$\Rightarrow R=6$ (cm)

 

Akai Haruma
7 tháng 6 2021 lúc 0:48

Hình vẽ:

Nguyễn Hoàng Nam
Xem chi tiết
Lê Nghia
Xem chi tiết
Nguyễn Gia Huy
11 tháng 4 2023 lúc 21:50

Ta có : A là giao điểm của 2 đường tiếp tuyến tại E và G của O =>AG=AE

Chứng minh tương tự,ta được BE=BH

=>AG+BH=AB

Tương tự,ta có DG+HC=CD

=>AB+CD=AD+BC=10cm

nửa đường tròn  tâm G: 2AG.π/2=AG.π=1/2.AD.π

nửa đường tròn tâm H:1/2.BC.π

=> S=1/2(AD+BC)π=5πloading...

Quỳnh Huỳnh
Xem chi tiết
OoO Kún Chảnh OoO
Xem chi tiết
Bang Bang
Xem chi tiết
tth_new
8 tháng 3 2018 lúc 14:42

Lấy điểm I trên đoạn thẳng AC . Ta có hình vẽ sau:

A B C D O I

Khi đó: \(AB.CD=IA.BD\Leftrightarrow\frac{AB}{AI}=\frac{DB}{DC}\)

Mà \(\widehat{BAI}=\widehat{BDC}\)nên \(\Delta BAI\infty\Delta BDC\)(c.g.c)

Từ đó \(\widehat{IBC}=\widehat{BDC}\)

Với cách chọn điểm I như trên ta được:

\(\widehat{IBC}=\widehat{ABD}\Rightarrow\Delta IBC\infty\Delta ABD\)  (g.g)

 Từ đó suy ra AB . BC = IC . BD  (đpcm)

Nấm Tẹt
Xem chi tiết
Nguyễn Hoàng Long Ánh
Xem chi tiết
Thanh Tùng DZ
31 tháng 10 2019 lúc 17:01

A B C D M Q N P I

gọi I là giao điểm của QM và BD

Áp dụng định lí Mê-nê-la-uyt cho \(\Delta ABD\)

\(\frac{AQ}{QD}.\frac{ID}{IB}.\frac{MB}{MA}=1\)

vì Q,M,I thẳng hàng , kết hợp với MA = QA suy ra \(\frac{MB}{QD}.\frac{ID}{IB}=1\)

Ta có : MB = NB ; DP = DQ ; PC = NC 

nên \(\frac{NB}{DP}.\frac{ID}{IB}=1\Rightarrow\frac{PC}{PD}.\frac{ID}{IB}.\frac{NB}{NC}=1\)

do đó , theo định lí Mê-nê-la-uyt thì I,N,P thẳng hàng

từ đó ta được đpcm

Khách vãng lai đã xóa
Ngọc Phạm Kim
Xem chi tiết