a) giải Pt
(2x+1)(x+1)2(2x+3)=18
Các thánh giải giúp em ạ
Giúp e vs ạ Giải bất pt: a) 2x - x(3x + 1) < 15 - 3x(x + 2) b) 4(x - 3)² - (2x - 1)² ≥ 12x
a: =>2x-3x^2-x<15-3x^2-6x
=>x<-6x+15
=>7x<15
=>x<15/7
b: =>4x^2-24x+36-4x^2+4x-1>=12x
=>-20x+35>=12x
=>-32x>=-35
=>x<=35/32
\(a,2x-x\left(3x+1\right)< 15-3x\left(x+2\right)\\ \Leftrightarrow2x-3x^2-x< 15-3x^2-6x\\ \Leftrightarrow3x^2-3x^2+2x+6x-x< 15\\ \Leftrightarrow7x< 15\\ \Leftrightarrow x< \dfrac{15}{7}\)
Vậy S={-∞; 15/7}
\(b,4\left(x-3\right)^2-\left(2x-1\right)^2\ge12x\\ \Leftrightarrow4\left(x^2-6x+9\right)-\left(4x^2-4x+1\right)-12x\ge0\\ \Leftrightarrow4x^2-4x^2-24x+4x-12x\ge-36+1\\ \Leftrightarrow-32x\ge-35\\ \Leftrightarrow x\le\dfrac{35}{32}\)
Vậy S={-∞; 35/32]
Giải pt:
\(\sqrt{2x+3}+\sqrt{x+1}=3x+\sqrt{2x^2+5x+3}-16\)
Em cảm ơn ạ.
Nếu bạn thiếu số 2 bên cạnh $\sqrt{2x^2+5x+3}$ thì có thể tham khảo lời giải tại đây:
https://hoc24.vn/cau-hoi/tim-x-sao-cho-sqrt2x3sqrtx13x2sqrt2x25x3-16.235781793134
Giải pt:
\(2x^2+5x-1=7\sqrt{x^3-1}\)
Em cảm ơn ạ.
ĐKXĐ: \(x^3-1\ge0\Rightarrow\left(x-1\right)\left(x^2+x+1\right)\ge0\)
mà \(x^2+x+1=x^2+2.x.\dfrac{1}{2}+\left(\dfrac{1}{2}\right)^2+\dfrac{3}{4}=\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\)
\(\Rightarrow x-1\ge0\Rightarrow x\ge1\)
\(2x^2+5x-1=7\sqrt{x^3-1}\Leftrightarrow2x^2+2x+2+3x-3=7\sqrt{x-1}\sqrt{x^2+x+1}\)
\(\Leftrightarrow2\left(x^2+x+1\right)+3\left(x-1\right)=7\sqrt{x-1}\sqrt{x^2+x+1}\)
Đặt \(\left\{{}\begin{matrix}a=\sqrt{x-1}\\b=\sqrt{x^2+x+1}\end{matrix}\right.\left(a,b\ge0\right)\)
\(\Rightarrow\) pt trở thành \(2b^2+3a^2=7ab\Rightarrow2b^2-7ab+3a^2=0\)
\(\Rightarrow2b^2-6ab-ab+3a^2=0\Rightarrow2b\left(b-3a\right)-a\left(b-3a\right)=0\)
\(\Rightarrow\left(b-3a\right)\left(2b-a\right)=0\Rightarrow\left[{}\begin{matrix}b=3a\\2b=a\end{matrix}\right.\)
\(TH_1:b=3a\Rightarrow\sqrt{x^2+x+1}=3\sqrt{x-1}\)
\(\Rightarrow x^2+x+1=9\left(x-1\right)\Rightarrow x^2-8x+10=0\)
\(\Delta=\left(-8\right)^2-4.10=24\Rightarrow\left[{}\begin{matrix}x=\dfrac{-b-\sqrt{\Delta}}{2a}=\dfrac{8-\sqrt{24}}{2}=4-\sqrt{6}\\x=\dfrac{-b+\sqrt{\Delta}}{2a}=\dfrac{8+\sqrt{24}}{2}=4+\sqrt{6}\end{matrix}\right.\)
\(TH_2:2b=a\Rightarrow2\sqrt{x^2+x+1}=\sqrt{x-1}\)
\(\Rightarrow4\left(x^2+x+1\right)=x-1\Rightarrow4x^2+3x+5=0\)
mà \(4x^2+3x+5=\left(2x\right)^2+2.2x.\dfrac{3}{4}+\left(\dfrac{3}{4}\right)^2+\dfrac{71}{16}=\left(2x+\dfrac{3}{4}\right)^2+\dfrac{71}{16}>0\)
\(\Rightarrow\) loại
Vậy pt có tập nghiệm \(S=\left\{4+\sqrt{6};4-\sqrt{6}\right\}\)
Giải pt:
a) \(\sqrt{2x^2-3}\)=\(\sqrt{4x-3}\)
b) \(\sqrt{2x-1}\)=\(\sqrt{x-1}\)
c) \(\sqrt{x^2-x-6}\)=\(\sqrt{x-3}\)
d) \(\sqrt{x^2-x}\)=\(\sqrt{3x-5}\)
Giúp em với, anh thịnh giúp em xíu á
a, \(\sqrt{2x^2-3}=\sqrt{4x-3}\) (x \(\ge\) \(\sqrt{\dfrac{3}{2}}\))
Vì hai vế ko âm, bp 2 vế ta được:
2x2 - 3 = 4x - 3
\(\Leftrightarrow\) 2x2 = 4x
\(\Leftrightarrow\) x2 = 2x
\(\Leftrightarrow\) x2 - 2x = 0
\(\Leftrightarrow\) x(x - 2) = 0
\(\Leftrightarrow\) \(\left[{}\begin{matrix}x=0\\x-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\left(KTM\right)\\x=2\left(TM\right)\end{matrix}\right.\)
Vậy S = {2}
b, \(\sqrt{2x-1}=\sqrt{x-1}\) (x \(\ge\) 1)
Vì hai vế ko âm, bp 2 vế ta được:
2x - 1 = x - 1
\(\Leftrightarrow\) x = 0 (KTM)
Vậy x = \(\varnothing\)
c, \(\sqrt{x^2-x-6}=\sqrt{x-3}\) (x \(\ge\) 3)
Vì hai vế ko âm, bp 2 vế ta được:
x2 - x - 6 = x - 3
\(\Leftrightarrow\) x2 - 2x - 3 = 0
\(\Leftrightarrow\) x2 - 3x + x - 3 = 0
\(\Leftrightarrow\) x(x - 3) + (x - 3) = 0
\(\Leftrightarrow\) (x - 3)(x + 1) = 0
\(\Leftrightarrow\) \(\left[{}\begin{matrix}x-3=0\\x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\left(TM\right)\\x=-1\left(KTM\right)\end{matrix}\right.\)
Vậy S = {3}
d, \(\sqrt{x^2-x}=\sqrt{3x-5}\) (x \(\ge\) \(\dfrac{5}{3}\))
Vì hai vế ko âm, bp 2 vế ta được:
x2 - x = 3x - 5
\(\Leftrightarrow\) x2 - 4x + 5 = 0
\(\Leftrightarrow\) x2 - 4x + 4 + 1 = 0
\(\Leftrightarrow\) (x - 2)2 + 1 = 0
Vì (x - 2)2 \(\ge\) 0 với mọi x \(\ge\) \(\dfrac{5}{3}\) \(\Rightarrow\) (x - 2)2 + 1 > 0 với mọi x \(\ge\) \(\dfrac{5}{3}\)
\(\Rightarrow\) Pt vô nghiệm
Vậy S = \(\varnothing\)
Chúc bn học tốt!
Nguyễn Lê Phước Thịnh nhờ anh xíu ạ
Giải pt:\(\left\{{}\begin{matrix}x-2y+\dfrac{1}{2x+3y}=2\\2x-4y+\dfrac{3}{2x+3y}=3\end{matrix}\right.\)
Giúp mk vs ạ!
Đặt \(\left\{{}\begin{matrix}x-2y=a\\\dfrac{1}{2x+3y}=b\end{matrix}\right.\)
hpt trở thành:
\(\left\{{}\begin{matrix}a+b=2\\2a+3b=3\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}a=3\\b=-1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x-2y=3\\\dfrac{1}{2x+3y}=-1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=3+2y\\2x+3y=-1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=3+2y\\2\left(3+2y\right)+3y=-1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=3+2y\\6+4y+3y=-1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=3+2y\\7y=-7\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=3+2.-1\\y=-1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-1\end{matrix}\right.\)
Vậy nghiệm hpt \(\left\{{}\begin{matrix}x=1\\y=-1\end{matrix}\right.\)
GIẢI PT:
a) \(\dfrac{x}{x-5}=\dfrac{x-2}{x-6}\)
b) \(\dfrac{2x}{8-x}-\dfrac{2-2x}{4-x}=1\)
e) \(\dfrac{2x}{x+4}-\dfrac{4x}{x^2-16}=0\)
MN GIẢI BÀI NÀY GIÚP E VỚI Ạ. E ĐANG CẦN GẤP Ạ.
\(a,ĐK:...\\ PT\Leftrightarrow x^2-6x=x^2-7x+10\\ \Leftrightarrow x=10\left(tm\right)\\ b,ĐK:...\\ PT\Leftrightarrow2x\left(4-x\right)-\left(2-2x\right)\left(8-x\right)=\left(8-x\right)\left(4-x\right)\\ \Leftrightarrow8x-2x^2+16+18x-2x^2=32-12x+x^2\\ \Leftrightarrow3x^2-38x+16=0\left(casio\right)\\ c,ĐK:...\\ PT\Leftrightarrow2x\left(x-4\right)-4x=0\\ \Leftrightarrow2x^2-12x=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\left(tm\right)\\x=6\left(tm\right)\end{matrix}\right.\)
Giải Pt:
\(\left(4x-1\right)\sqrt{x^2+1}=2x^2-2x+2\)
Em cảm ơn ạ.
Đặt \(\sqrt{x^2+1}=t>0\)
\(\Rightarrow\left(4x-1\right)t=2t^2-2x\)
\(\Leftrightarrow2t^2-\left(4x-1\right)t-2x=0\)
\(\Delta=\left(4x-1\right)^2+16x=\left(4x+1\right)^2\)
\(\Rightarrow\left[{}\begin{matrix}t=\dfrac{4x-1-\left(4x+1\right)}{4}=-\dfrac{1}{2}\left(loại\right)\\t=\dfrac{4x-1+4x+1}{4}=2x\end{matrix}\right.\)
\(\Rightarrow\sqrt{x^2+1}=2x\) (\(x\ge0\))
\(\Leftrightarrow x^2+1=4x^2\)
\(\Rightarrow x=\dfrac{\sqrt{3}}{3}\)
GIẢI PT SAU:
\(\dfrac{2x^2-5x+2}{x-1}=\dfrac{2x^2+x+15}{x-3}\)
MN GIÚP E BÀI NÀY VỚI Ạ. GHI RÕ CÁCH LÀM DÙM E VỚI Ạ.
Không biết nãy bị lỗi ở đâu, mình gửi lại:<
giải giúp em với ạ x^3 < 2x + 4 bất pt ạ