Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Hiền Trang
Xem chi tiết
Nguyễn Khánh Chi
7 tháng 2 2021 lúc 22:59

Có x = 3

<=> -4.3 - 10 = 5.3 + a

<=> -22 = 15 + a

<=> a = -37

Vậy a = -37

Khách vãng lai đã xóa
Nguyễn Huy Tú
8 tháng 2 2021 lúc 14:39

xin lỗi mình nhẩm sai :v 

\(\Leftrightarrow-12-10=15+a\Leftrightarrow-22=15+a\Leftrightarrow a=-37\)

Vậy a = -37 nếu x = 3

Khách vãng lai đã xóa
Nguyễn Huy Tú
8 tháng 2 2021 lúc 14:37

Vì x = 3 là nghiệm phương trình trên nên 

Thay x = 3 vào phương trình trên ta được : 

\(\Leftrightarrow-12-10=15+a\Leftrightarrow-22=15+a\Leftrightarrow a=-7\)

Vậy a = -7 nếu x = 3 

Khách vãng lai đã xóa
D ris
Xem chi tiết
Trần Đăng Nhất
6 tháng 4 2020 lúc 17:06

Để \( -x + 9 = 5x - a\) nhận $x=1$ là nghiệm thì phương trình phải thỏa mãn \(-1+9=5.1-a\) \(\Leftrightarrow a=-3\)

Vậy \(a=-3\)

Khách vãng lai đã xóa
Inosuke Hashibira
6 tháng 4 2020 lúc 17:09

Bài làm

Vì nghiệm của phương trình trên là x = 1 nên phương trình trên sẽ thay x = 1.

Ta được: -1 + 9 = 5 . 1 - a

<=> 8 = 5 - a

<=> a = 5 - 8

<=> a = -3

Vậy a = -3 khi x = 1

# Học tốt #

Khách vãng lai đã xóa
Quỳnh Anh Đỗ Vũ
Xem chi tiết
Nguyễn Lê Phước Thịnh
20 tháng 2 2022 lúc 19:53

Bài 8:

a: Khi a=1 thì phương trình sẽ là \(\left(1-4\right)x-12x+7=0\)

=>-3x-12x+7=0

=>-15x+7=0

=>-15x=-7

hay x=7/15

b: Thay x=1 vào pt, ta được:

\(a^2-4-12+7=0\)

\(\Leftrightarrow\left(a-3\right)\left(a+3\right)=0\)

hay \(a\in\left\{3;-3\right\}\)

c: Pt suy ra là \(\left(a^2-16\right)x+7=0\)

Để phương trình đã cho luôn có một nghiệm duy nhất thì (a-4)(a+4)<>0

hay \(a\notin\left\{4;-4\right\}\)

quỷ vô lệ
Xem chi tiết
Nguyễn Lê Phước Thịnh
22 tháng 10 2023 lúc 21:37

1:

\(A=\dfrac{9}{x-\sqrt{x}-2}+\dfrac{2\sqrt{x}+5}{\sqrt{x}+1}-\dfrac{\sqrt{x}-1}{\sqrt{x}-2}\)

\(=\dfrac{9}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}+\dfrac{2\sqrt{x}+5}{\sqrt{x}+1}-\dfrac{\sqrt{x}-1}{\sqrt{x}-2}\)

\(=\dfrac{9+\left(2\sqrt{x}+5\right)\left(\sqrt{x}-2\right)-\left(\sqrt{x}-1\right)\cdot\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}\)

\(=\dfrac{9+2x-4\sqrt{x}+5\sqrt{x}-10-x+1}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}\)

\(=\dfrac{x+\sqrt{x}}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}=\dfrac{\sqrt{x}}{\sqrt{x}-2}\)

Để A là số nguyên thì \(\sqrt{x}⋮\sqrt{x}-2\)

=>\(\sqrt{x}-2+2⋮\sqrt{x}-2\)

=>\(\sqrt{x}-2\in\left\{1;-1;2;-2\right\}\)

=>\(\sqrt{x}\in\left\{3;1;4;0\right\}\)

=>\(x\in\left\{9;1;16;0\right\}\)

2:

\(\text{Δ}=\left(-2m-3\right)^2-4m\)

\(=4m^2+12m+9-4m\)

\(=4m^2+5m+9\)

\(=\left(2m\right)^2+2\cdot2m\cdot\dfrac{5}{4}+\dfrac{25}{16}+\dfrac{56}{16}\)

\(=\left(2m+\dfrac{5}{4}\right)^2+\dfrac{56}{16}>=\dfrac{56}{16}>0\)

=>Phương trình luôn có hai nghiệm phân biệt

\(x_1^2+x_2^2=9\)

=>\(\left(x_1+x_2\right)^2-2x_1x_2=9\)

=>\(\left(2m+3\right)^2-2m=9\)

=>\(4m^2+12m+9-2m-9=0\)

=>4m^2+10m=0

=>2m(2m+5)=0

=>m=0 hoặc m=-5/2

Kim Ngân
Xem chi tiết
Vũ Ngọc Hải Vân
Xem chi tiết
Nguyễn Minh Quang
13 tháng 1 2022 lúc 20:35

a. để phương trình nhận x=3 là nghiệm ta có 

\(a\left(3+2\right)-a^2-2=0\Leftrightarrow a^2-5a+2=0\Leftrightarrow a=\frac{5\pm\sqrt{17}}{2}\)

b. Để phương trình có duy nhất 1 nghiệm âm ta có : 

\(\hept{\begin{cases}a\ne0\\x=\frac{a^2-2a+2}{a}< 0\end{cases}\Leftrightarrow a< 0}\) do \(a^2-2a+2>0\forall a\)

c. Để phương trình đã cho vô nghiệm thì a=0

d. Phương trình đã cho không thể có vô số nghiệm thực.

Khách vãng lai đã xóa
Vũ Ngọc Hải Vân
Xem chi tiết
Vũ Hải Nam
13 tháng 1 2022 lúc 20:40

32+1123+ \(x = {-b \pm \sqrt{b^2-4ac} \over 2a}gfdrrffhjxxojmu09\)

Khách vãng lai đã xóa
Hàn Trúc Linh
Xem chi tiết