Cho khối chóp S.ABC có đáy ABC là tam giác vuông cân tại A, AB =a , \(\widehat{SBA}=\widehat{SAC}=90^0.\) Góc giữa hai mặt phẳng (SAB) và (SAC) bằng \(60^0\) . Tính thể tích khối chóp?
Cho hình chóp S.ABC có đáy ABC là tam giác vuông cân tại A và AB=AC=a, biết tam giác cân SAB cân tại S và nằm trong mặt phẳng vuông góc với (ABC). Mặt phẳng (SAC) hợp với mặt phẳng (ABC) một góc bằng . Thể tích của khối chóp S.ABC bằng
A. a 3 3
B. a 3 4
C. a 3 9
D. a 3 12
Cho hình chóp S.ABC có đáy là tam giác ABC vuông cân tại B, AB = a, tam giác SAC cân tại S và nằm trong mặt phẳng vuông góc với đáy. Tính thể tích khối chóp S.ABC biết góc giữa SB và mặt phẳng (ABC) bằng 450.
A. a 3 3 4
B. a 3 3 12
C. a 3 2 12
D. a 3 2 4
Đáp án C
Gọi H là trung điểm AC. Ta có tam giác SAC cân tại S và nằm trong mặt phẳng vuông góc với (ABC)
suy ra S H ⊥ A B C
Ta có
S B , A B C = S B H ^ = 45 o ⇒ S H = B H = 1 2 A C = a 2 2 V S . A B C = 1 3 . a 2 2 . 1 2 a 2 = a 3 2 12
Cho hình chóp S.ABC có đáy là tam giác ABC vuông cân tại B, AB = a, tam giác SAC cân tại S và nằm trong mặt phẳng vuông góc với đáy. Tính thể tích khối chóp S.ABC biết góc giữa SB và mặt phẳng (ABC) bằng 450
A. a 3 3 4
B. a 3 3 12
C. a 3 2 12
D. a 3 2 4
Cho hình chóp \(S.ABC\) có đáy \(ABC\) là tam giác vuông cân tại \(A\), \(\widehat{BAC}=120^o\), \(AB=AC=a\). Tam giác \(SAB\) vuông tại \(B\), tam giác \(SAC\) vuông tại \(C\), góc giữa hai mặt phẳng \(\left(SAB\right)\) và \(\left(ABC\right)\) bằng \(60^o\). Gọi \(H\) là hình chiếu vuông góc của điểm \(S\) lên mặt phẳng \(\left(ABC\right)\). Chứng minh rằng \(HB\) vuông góc \(AB\) và tính thể tích khối chóp \(S.ABC\) theo \(a\)
Cho hình chóp S.ABC có tam giác ABC vuông cân tại B , A C = a 2 , mặt phẳng (SAC) vuông góc với mặt đáy (ABC). Các mặt bên S A B , S B C tạo với mặt đáy các góc bằng nhau và bằng 60 ° . Tính theo a thể tích V của khối chóp S.ABC
A. V = 3 a 3 2
B. V = 3 a 3 4 V = 3 a 3 12
C. V = 3 a 3 6
D. V = 3 a 3 12
Cho hình chóp S.ABC có đáy là tam giác ABC đều cạnh a, tam giác SBA vuông tại B, tam giác SAC vuông tại C. Biết góc giữa hai mặt phẳng (SAB) và (ABC) bằng 60 ° . Tính khoảng cách từ điểm C đến mặt phẳng (SAB)
A. 3 3 a 8
B. 3 a 4
C. 3 3 a 6
D. 3 3 a 11
Cho hình chóp S.ABC có đáy là tam giác vuông tại A, các cạnh AB = 1, AC = 2. Các tam giác SAB và SAC lần lượt vuông tại B và C. Góc giữa (SBC) và mặt phẳng đáy bằng 60°. Tính thể tích của khối chóp đã cho.
A. V = 2 15 5
B. V = 2 15 15
C. V = 2 15 3
D. V = 2 3 3
Cho hình chóp S.ABC có tam giác ABC vuông cân tại B, AC = a 2 , mặt phẳng (SAC) vuông góc với mặt đáy (ABC). Các mặt bên (SAB), (SBC) tạo với mặt đáy các góc bằng nhau và bằng 60 ° .Tính theo a thể tích V của khối chóp S. ABC.
A. V = 3 a 3 2
B. V = 3 a 3 4
C. V = 3 a 3 6
D. V = 3 a 3 12
Đáp án D
Gọi H là hình chiếu của S trên A C ⇒ S H ⊥ A B C
Kẻ H M ⊥ A B M ∈ A B , H N ⊥ A C N ∈ A C
Suy ra S A B ; A B C ^ = S B C ; A B C ^ = S M H ^ = S N H ^ = 60 °
⇒ ∆ S H M = ∆ S H N ⇒ H M = H N ⇒ H là trung điểm của AC
Tam giác SHM vuông tại H, có tan S M H ^ = S H H M ⇒ S H = a 3 2
Diện tích tam giác ABC là S ∆ A B C = 1 2 . A B . B C = a 2 2
Vậy thể tích cần tính là V = 1 3 . S H . S A B C = 1 3 . a 3 2 . a 2 2 = a 3 3 12
Cho hình chóp S.ABC có đáy là tam giác vuông cân tại B, AB=a. Tam giác SAC cân tại S và nằm trong mặt phẳng vuông góc với đáy. Tính thể tích khối chóp S.ABCD biết góc giữa đường thẳng SB và mặt phẳng (ABC) bằng 45 0 .
A. a 3 3 4
B. a 3 3 12
C. a 3 2 12
D. a 3 2 4
Cho hình chóp S.ABC có đáy là tam giác vuông cân tại B, AB=a. Tam giác SAC cân tại S và nằm trong mặt phẳng vuông góc với đáy. Tính thể tích khối chóp S.ABCD biết góc giữa đường thẳng SB và mặt phẳng (ABC) bằng 45 0 .