chứng minh \(\frac{1}{x^2}+\frac{1}{y^2}\text{≤}\frac{8}{\left(x+y\right)^2}\) với x,y>0
+1GP cho cách chứng minh bằng $\text{C-S}$ hoặc $\text{AM-GM}$ - Hãy thử ngay$!?$
Bài toán. Cho $x,y,z>0.$ Chứng minh: $$\frac{1}{2}+\frac{1}{2}{r}^{2}+\frac{1}{3}\,{p}^{2}+\frac{2}{3}\,{q}^{2}-\frac{1}{6} Q-\frac{3}{2} r-\frac{2}{3}q-\frac{1}{6}pq-\frac{5}{3} \,pr\geqslant 0$$
với $$\Big[p=x+y+z,q=xy+zx+yz,r=xyz,Q= \left( x-y \right) \left( y-z \right)
\left( z-x \right)\Big ]$$ (Xuất xứ: Sáng tác.)
Một cách chứng minh bằng SOS:
$$\text{VT} = \frac{1}{12}\,\sum \left( 3\,{z}^{2}+1 \right) \left( x-y \right) ^{2}+\frac{1}{6} \sum\,y
\left( y+z \right) \left( x-1 \right) ^{2}+\frac{1}{2}\, \left( xyz-1
\right) ^{2} \geqslant 0$$
Ngoài ra$,$ có cách chứng minh bằng Cauchy Schwarz:D Ai có thể tìm thấy nó$?$
Mới xem trên VMF về :))
Viết lại bất đẳng thức như sau:
\((x^2+1)(y^2+1)(z^2+1) \geqslant \frac{1}{6} \sum (x+yz+zx)^2 +\frac{1}{2} (x^2+y^2+z^2) +\frac{(xyz+1)^2}{2}\,\,\,(1)\)
Ta có:
\(\text{VT} = x^2 y^2 z^2 + \frac{1}{2} \sum (x^2+y^2 z^2 +z^2 x^2) +\frac{1}{2}(x^2+y^2+z^2) +1\)
\(\geqslant \frac{1}{6} \sum (x+yz+zx)^2 +\frac{1}{2} \Big[(x^2+y^2+z^2) +x^2 y^2 z^2 +(x^2 y^2 z^2 +1) +1\Big]\)
\(\geqslant \frac{1}{6} \sum (x+yz+zx)^2 +\frac{1}{2} (x^2+y^2+z^2) +\frac{(xyz+1)^2}{2}=\text{VP}\)
cho x,y>0 và 2x>y Chứng minh rằng \(\left(\frac{1}{x}+2\right)^2.\left(\frac{2}{y}-\frac{1}{x}\right).\frac{2y-1}{y}< =\frac{81}{8}\)
Chứng minh với mọi x, y khác 0 thì giá trị của biểu thức \(\left(x+\frac{1}{x}\right)^2+\left(y+\frac{1}{y}\right)^2+\left(z+\frac{1}{z}\right)^2-\left(x+\frac{1}{x}\right)\left(y+\frac{1}{y}\right)\left(z+\frac{1}{z}\right)\)
không phụ thuộc vào giấ trị của biến
\(\text{cho }xy\ne0\text{ và x + y = 1 }\)
\(\text{Chứng minh rằng}:\frac{x}{y^3-1}+\frac{y}{x^3-1}-\frac{2\left(xy-2\right)}{x^2y^2+3}=0\)
(chứng minh rằng\) x y 3 −1 - Online Math
Ta có \(y^3-1=\left(y-1\right)\left(y^2+y+1\right)=-x\left(y^2+y+1\right)\)
(vì \(xy\ne0\Rightarrow x,y\ne0\))
\(\Rightarrow x-1\ne0;y-1\ne0\)
\(\Rightarrow\frac{x}{y^3-1}=\frac{-1}{y^2+y+1}\)
\(x^3-1=\left(x-1\right)\left(x^2-x+1\right)=-y\left(x^2-x+1\right)\Rightarrow\frac{y}{x^3-1}=\frac{-1}{x^2+x+1}\)
\(\Rightarrow\frac{x}{y^3-1}+\frac{y}{x^3-1}=\frac{-1}{y^2+y+1}+\frac{-1}{x^2+x+1}\)
\(=-\left(\frac{x^2+x+1+y^2+y+1}{\left(x^2+x+1\right)\left(y^2+y+1\right)}\right)=-\left(\frac{\left(x+y\right)^2-2xy+\left(x+y\right)+2}{x^2y^2+\left(x+y\right)^2-2xy+xy\left(x+y\right)+xy+\left(x+y\right)+1}\right)\)
\(=-\frac{4-2xy}{x^2y^2+3}\Rightarrow\frac{x}{y^3-1}+\frac{y}{x^3-1}-\frac{2\left(xy-2\right)}{x^2y^2+3}=0\)
Chứng minh BĐT sau: \(\frac{1}{x^2}+\frac{1}{y^2}\ge\frac{8}{\left(x+y\right)^2}\) với x khác y khác 0
Áp dụng bất đẳng thức \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)
\(\frac{1}{x^2}+\frac{1}{y^2}\ge\frac{4}{x^2+y^2}=\frac{8}{2x^2+2y^2}\)
Mặt khác:
\(2x^2+2y^2\ge x^2+y^2+2xy=\left(x+y\right)^2\)
=>\(\frac{1}{x^2}+\frac{1}{y^2}\ge\frac{8}{\left(x+y\right)^2}\)
Ai thấy mình làm đúng thì tích nha.Ai tích mình mình tích lại
Khánh làm sai rồi
\(2x^2+2y^2\ge x^2+2xy+y^2\Rightarrow\frac{8}{2x^2+2y^2}\le\frac{8}{\left(x+y\right)^2}\)
\(\Leftrightarrow\frac{x^2+2xy+y^2}{x^2}+\frac{x^2+2xy+y^2}{y^2}\ge8\)
\(\Leftrightarrow\frac{2y}{x}+\frac{2x}{y}+\frac{x^2}{y^2}+\frac{y^2}{x^2}\ge6\)-> là bđt đúng => đpcm
Cho x và y là hai số khác 0 và thỏa mãn x+y khác 0. Chứng minh rằng:
\(\frac{1}{\left(x+y\right)^3}\left(\frac{1}{x^3}+\frac{1}{y^3}\right)+\frac{3}{\left(x+y\right)^4}\left(\frac{1}{x^2}+\frac{1}{y^2}\right)+\frac{6}{\left(x+y\right)^5}\left(\frac{1}{x}+\frac{1}{y}\right)=\frac{1}{x^3y^3}\)
cho x,y,z>0 với xy+yz+zx=3
Chứng minh rằng \(\frac{1}{1+x^2\left(y+z\right)}+\frac{1}{1+y^2\left(x+z\right)}+\frac{1}{1+z^2\left(y+x\right)}\le\frac{1}{xyz}\)
chứng minh rằng với mọi x,y lớn hơn 0 thì:
\(\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{x^2+y^2}>=\frac{10}{\left(x+y\right)^2}\)
Áp dụng BĐT Cauchy, ta có:
\(\frac{1}{x^2}+\frac{1}{y^2}\ge2\sqrt{\frac{1}{x^2}.\frac{1}{y^2}}=\frac{2}{xy}\)
\(\Rightarrow VT\ge\frac{2}{xy}+\frac{1}{x^2+y^2}\)
\(\Leftrightarrow VT\ge\left(\frac{1}{2xy}+\frac{1}{x^2+y^2}\right)+\frac{3}{2xy}\)
\(\Rightarrow VT\ge\frac{4}{\left(x+y\right)^2}+\frac{3}{\frac{\left(x+y\right)^2}{2}}\)
\(\Leftrightarrow VT\ge\frac{4}{\left(x+y\right)^2}+\frac{6}{\left(x+y\right)^2}=\frac{10}{\left(x+y\right)^2}\)
Dấu = xảy ra khi \(x=y>0\)
Vậy \(\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{x^2+y^2}\ge\frac{10}{\left(x+y\right)^2}\) với \(\forall x;y>0\)
Chứng minh rằng nếu \(\frac{x^2-yz}{x\left(1-yz\right)}=\frac{y^2-xz}{y\left(1-xz\right)}\) với x khác y, yz,xz khác 1, x, y, z khác 0 thì \(x+y+z=\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\)