+1GP cho cách chứng minh bằng $\text{C-S}$ hoặc $\text{AM-GM}$ - Hãy thử ngay$!?$
Bài toán. Cho $x,y,z>0.$ Chứng minh: $$\frac{1}{2}+\frac{1}{2}{r}^{2}+\frac{1}{3}\,{p}^{2}+\frac{2}{3}\,{q}^{2}-\frac{1}{6} Q-\frac{3}{2} r-\frac{2}{3}q-\frac{1}{6}pq-\frac{5}{3} \,pr\geqslant 0$$
với $$\Big[p=x+y+z,q=xy+zx+yz,r=xyz,Q= \left( x-y \right) \left( y-z \right)
\left( z-x \right)\Big ]$$ (Xuất xứ: Sáng tác.)
Một cách chứng minh bằng SOS:
$$\text{VT} = \frac{1}{12}\,\sum \left( 3\,{z}^{2}+1 \right) \left( x-y \right) ^{2}+\frac{1}{6} \sum\,y
\left( y+z \right) \left( x-1 \right) ^{2}+\frac{1}{2}\, \left( xyz-1
\right) ^{2} \geqslant 0$$
Ngoài ra$,$ có cách chứng minh bằng Cauchy Schwarz:D Ai có thể tìm thấy nó$?$
Mới xem trên VMF về :))
Viết lại bất đẳng thức như sau:
\((x^2+1)(y^2+1)(z^2+1) \geqslant \frac{1}{6} \sum (x+yz+zx)^2 +\frac{1}{2} (x^2+y^2+z^2) +\frac{(xyz+1)^2}{2}\,\,\,(1)\)
Ta có:
\(\text{VT} = x^2 y^2 z^2 + \frac{1}{2} \sum (x^2+y^2 z^2 +z^2 x^2) +\frac{1}{2}(x^2+y^2+z^2) +1\)
\(\geqslant \frac{1}{6} \sum (x+yz+zx)^2 +\frac{1}{2} \Big[(x^2+y^2+z^2) +x^2 y^2 z^2 +(x^2 y^2 z^2 +1) +1\Big]\)
\(\geqslant \frac{1}{6} \sum (x+yz+zx)^2 +\frac{1}{2} (x^2+y^2+z^2) +\frac{(xyz+1)^2}{2}=\text{VP}\)