(x+3/2017)+(x+1/2019)=(2x-2/2021)
cho x,y,z thỏa mãn : x+y+z=1/2 ; 1/y^2+1/z^2+1/xyz=4 ; 1/x+1/y+1/z>0. tính Q = (x^2019+z^2019)+(y^2017+z^2017)(x^2021+y^2021)
tìm x biết: x+1/2019+x+2/2018+x+3/2017=x-1/2021+x-2/2022+x-3/2023
\(\frac{x+1}{2019}+\frac{x+2}{2018}+\frac{x+3}{2017}=\frac{x-1}{2021}+\frac{x-2}{2022}+\frac{x-3}{2023}\)
\(\Leftrightarrow\left(\frac{x+1}{2019}+1\right)+\left(\frac{x+2}{2018}+1\right)+\left(\frac{x+3}{2017}+1\right)=\left(\frac{x-1}{2021}+1\right)+\left(\frac{x-2}{2022}+1\right)+\left(\frac{x-3}{2023}+1\right)\)
\(\Leftrightarrow\left(\frac{x+1+2019}{2019}\right)+\left(\frac{x+2+2018}{2018}\right)+\left(\frac{x+3+2017}{2017}\right)=\left(\frac{x-1+2021}{2021}\right)+\left(\frac{x-2+2022}{2022}\right)+\left(\frac{x-3+2023}{2023}\right)\)
\(\Leftrightarrow\frac{x+2020}{2019}+\frac{x+2020}{2018}+\frac{x+2020}{2017}=\frac{x+2020}{2021}+\frac{x+2020}{2022}+\frac{x+2020}{2023}\)
\(\Leftrightarrow\frac{x+2020}{2019}+\frac{x+2020}{2018}+\frac{x+2020}{2017}-\frac{x+2020}{2021}-\frac{x+2020}{2022}-\frac{x+2020}{2023}=0\)
\(\Leftrightarrow\left(x+2020\right)\left(\frac{1}{2019}+\frac{1}{2018}+\frac{1}{2017}-\frac{1}{2021}-\frac{1}{2022}-\frac{1}{2023}\right)=0\)
Vì \(\frac{1}{2019}+\frac{1}{2018}+\frac{1}{2017}-\frac{1}{2021}-\frac{1}{2022}-\frac{1}{2023}\ne0\)
=> x + 2020 = 0
=> x = -2020
Bài làm :
Ta có :
\(\frac{x+1}{2019}+\frac{x+2}{2018}+\frac{x+3}{2017}=\frac{x-1}{2021}+\frac{x-2}{2022}+\frac{x-3}{2023}\)
\(\Leftrightarrow\left(\frac{x+1}{2019}+1\right)+\left(\frac{x+2}{2018}+1\right)+\left(\frac{x+3}{2017}+1\right)=\left(\frac{x-1}{2021}+1\right)+\left(\frac{x-2}{2022}+1\right)+\left(\frac{x-3}{2023}+1\right)\)
\(\Leftrightarrow\left(\frac{x+1+2019}{2019}\right)+\left(\frac{x+2+2018}{2018}\right)+\left(\frac{x+3+2017}{2017}\right)=\left(\frac{x-1+2021}{2021}\right)+\left(\frac{x-2+2022}{2022}\right)+\left(\frac{x-3+2023}{2023}\right)\)
\(\Leftrightarrow\frac{x+2020}{2019}+\frac{x+2020}{2018}+\frac{x+2020}{2017}=\frac{x+2020}{2021}+\frac{x+2020}{2022}+\frac{x+2020}{2023}\)
\(\Leftrightarrow\frac{x+2020}{2019}+\frac{x+2020}{2018}+\frac{x+2020}{2017}-\frac{x+2020}{2021}-\frac{x+2020}{2022}-\frac{x+2020}{2023}=0\)
\(\Leftrightarrow\left(x+2020\right)\left(\frac{1}{2019}+\frac{1}{2018}+\frac{1}{2017}-\frac{1}{2021}-\frac{1}{2022}-\frac{1}{2023}\right)=0\)
\(\text{Vì : }\frac{1}{2019}+\frac{1}{2018}+\frac{1}{2017}-\frac{1}{2021}-\frac{1}{2022}-\frac{1}{2023}\ne0\)
\(\Rightarrow x+2020=0\Leftrightarrow x=-2020\)
Vậy x=-2020
\(\frac{x+1}{2019}+\frac{x+2}{2018}+\frac{x+3}{2017}=\frac{x-1}{2021}+\frac{x-2}{2022}+\frac{x-3}{2023}\)
\(\Leftrightarrow\left(\frac{x+1}{2019}+1\right)+\left(\frac{x+2}{2018}+1\right)+\left(\frac{x+3}{2017}+1\right)=\left(\frac{x-1}{2021}+1\right)+\left(\frac{x-2}{2022}+1\right)+\left(\frac{x-3}{2023}+1\right)\)
\(\Leftrightarrow\frac{x+1+2019}{2019}+\frac{x+2+2018}{2018}+\frac{x+3+2017}{2017}=\frac{x-1+2021}{2021}+\frac{x-2+2022}{2022}+\frac{x-3+2023}{2023}\)\(\Leftrightarrow\frac{x+2020}{2019}+\frac{x+2020}{2018}+\frac{x+2020}{2017}=\frac{x+2020}{2021}+\frac{x+2020}{2022}+\frac{x+2020}{2023}\)
\(\Leftrightarrow\frac{x+2020}{2019}+\frac{x+2020}{2018}+\frac{x+2020}{2017}-\frac{x+2020}{2021}-\frac{x+2020}{2022}-\frac{x+2020}{2023}=0\)
\(\Leftrightarrow\left(x+2020\right)\left(\frac{1}{2019}+\frac{1}{2018}+\frac{1}{2017}-\frac{1}{2021}-\frac{1}{2022}-\frac{1}{2023}\right)=0\)
\(\Leftrightarrow x+2020=0\)
\(\Leftrightarrow x=-2020\)
Cho 3 số x,y,z thỏa mãn \(\hept{\begin{cases}x+y+z=2019\\\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{2019}\end{cases}}\).Tính giá trị biểu thức \(P=\left(x^{2017}+y^{2017}\right)\left(y^{2019}+z^{2019}\right)\left(z^{2021}+x^{2021}\right)\)
\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{x+y+z}\)
\(\Leftrightarrow\frac{1}{x}+\frac{1}{y}=\frac{1}{x+y+z}-\frac{1}{z}\)
\(\Leftrightarrow\frac{x+y}{xy}=\frac{z}{\left(x+y+z\right).z}-\frac{x+y+z}{z.\left(x+y+z\right)}=\frac{-x-y}{z.\left(x+y+z\right)}\)
\(\Leftrightarrow\frac{x+y}{xy}=\frac{x+y}{-z.\left(x+y+z\right)}\)
TH1: x+y=0
=> x=-y => P=0
TH2: xy=-z.(x+y+z)
\(\Leftrightarrow xy=-xz-zy-z^2\Leftrightarrow xy+xz+zy+z^2=0\Leftrightarrow x.\left(y+z\right)+z.\left(y+z\right)=0\)
\(\Leftrightarrow\left(x+z\right).\left(y+z\right)=0\Leftrightarrow\orbr{\begin{cases}x=-z\\y=-z\end{cases}\Rightarrow P=0}\)
Cho 3 số x, y, z TM: \(\left\{{}\begin{matrix}x+y+z=2017\\\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=\dfrac{1}{2017}\end{matrix}\right.\)
Tính GTBT: \(P=\left(x^{2017}+y^{2017}\right)\left(y^{2019}+z^{2019}\right)\left(z^{2021}+x^{2021}\right)\)
x-2017/2019 + x-2019/2017 = x+6/2021
Tính nhanh :
a,2017 x 2021 - 4031 / 2020 + 2017 x 2018
b,2017 x 2019 + 1009 / 2019 x 4035 - 1
Tính nhanh :
a,2017 x 2021 - 4031 / 2020 + 2017 x 2018
b,2017 x 2019 + 1009 / 2019 x 4035 - 1
a, \(\dfrac{2017.2021-4031}{2020+2017.2018}\)
= \(\dfrac{2017\left(2018+3\right)-4031}{2020+2017.2018}\)
= \(\dfrac{2017.2018+2017.3-4031}{2020+2017.2018}\)
= \(\dfrac{2017.2018+2020}{2020+2017.2018}\)
= 1
@Nguyen Thi Ngoc Linh
x-2017/2019 + x-2019/2017 = x+6/2021
\(\dfrac{x-2017}{2019}+\dfrac{x-2019}{2017}=\dfrac{x+6}{2021}\)
\(\Rightarrow\dfrac{x-2017}{2019}-1+\dfrac{x-2019}{2017}-1=\dfrac{x+6}{2021}-2\)
\(\Rightarrow\dfrac{x-2017}{2019}-\dfrac{2019}{2019}+\dfrac{x-2019}{2017}-\dfrac{2017}{2017}=\dfrac{x+6}{2021}-\dfrac{4042}{2021}\)
\(\Rightarrow\dfrac{x-2017-2019}{2019}+\dfrac{x-2019-2017}{2017}=\dfrac{x+6-4042}{2021}\)
\(\Rightarrow\dfrac{x-4036}{2019}+\dfrac{x-4036}{2017}=\dfrac{x-4036}{2021}\)
\(\Rightarrow\dfrac{x-4036}{2021}-\dfrac{x-4036}{2019}-\dfrac{x-4036}{2017}=0\)
\(\Rightarrow\left(x-4036\right)\left(\dfrac{1}{2021}-\dfrac{1}{2019}-\dfrac{1}{2017}\right)=0\)
=> x - 4036 = 0
=> x = 4036
x − 2017/2019 + x−2019/2017 = x+6/2021
=> x − 2017/2019 + x−2019/2017 = x+6/2021
=> x − 2017/2019 − 1 + x − 2019/2017 − 1 = x + 6/2021 − 2
=> x − 2017/2019 − 1 + x − 2019/2017 − 1 = x + 6/2021 − 2
=> x − 2017/2019 − 2019/2019 + x − 2019/2017 − 2017/2017
= x + 6/2021 − 4042/2021
=> x − 2017/2019 − 2019/2019 + x − 2019/2017 − 2017/2017
= x + 6/2021 − 4042/2021
=> x − 2017 − 2019/ 2019 + x − 2019 − 2017/2017
= x + 6 − 4042/2021
=> x − 2017 − 2019/2019 + x − 2019 − 2017/2017 = x + 6 − 4042/2021
=> x − 4036/2019 + x − 4036/2017 = x − 4036/2021
=> x − 4036/2019 + x − 4036/2017 = x − 4036/2021
=> x − 4036/2021 − x − 4036/2019 − x − 4036/2017 = 0
=> x − 4036/2021 − x − 4036/2019 − x − 4036/2017 = 0
=>(x − 4036)(12021 − 12019 − 12017) = 0
=> x - 4036 = 0
=> x = 4036
Cho 3 số x,y,z khác 0 đồng thời thỏa mãn \(x+y+z=\frac{1}{2},\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}+\frac{1}{xyz}=4\) và \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}>0\)
Tính giá trị biểu thức Q=\(\left(y^{2017}+z^{2017}\right)\left(z^{2019}+x^{2019}\right)\left(x^{2021}+y^{2021}\right)\)