Giải phương trình: \(\frac{x}{x^2-x-2}+\frac{x}{x^2+x-2}=0\)
1.Giải phương trình
1.giải phương trình
\(\frac{x^4}{x^2-4x+4}+\frac{^{x^2}}{x-2}-2=0\)
pT <=>\(\frac{x^4}{\left(x-2\right)^2}+\frac{x^2}{x-2}-2=0\)
đk: x khác 2
Đặt \(\frac{x^2}{x-2}=t\)
Ta có phương trình:
\(t^2+t-2=0\Leftrightarrow t^2+2t-t-2=0\Leftrightarrow t\left(t+2\right)-\left(t+2\right)=0\Leftrightarrow\left(t+2\right)\left(t-2\right)=0\)
<=> \(\orbr{\begin{cases}t=2\\t=-2\end{cases}}\)
Với t=2 ta có:
\(\frac{x^2}{x-2}=2\Leftrightarrow x^2=2x-4\Leftrightarrow x^2-2x+4=0\Leftrightarrow\left(x-1\right)^2+3=0\)vô lí
Với t=-2:
\(\frac{x^2}{x-2}=-2\Leftrightarrow x^2=-2x+4\Leftrightarrow x^2+2x=4\Leftrightarrow\left(x+1\right)^2=5\Leftrightarrow\orbr{\begin{cases}x+1=\sqrt{5}\\x+1=-\sqrt{5}\end{cases}}\)
<=> \(\orbr{\begin{cases}x=-1+\sqrt{5}\\x=-1-\sqrt{5}\end{cases}}\)(tm)
Vậy...
giải phương trình:\(\frac{x^2+x}{x^2+3}+\frac{3x^2-x+15}{x^2+4}+\frac{x^2+x+2}{x^2+5}+x^3-3x^2+1=0\)
Giải phương trình sau :
\(\frac{4}{x^2}+\frac{x^2}{4-x^2}+\frac{5}{2}\left(\frac{\sqrt{4-x^2}}{x}+\frac{x}{\sqrt{4-x^2}}\right)+2=0\)
\(pt\Leftrightarrow\left(\frac{4}{x^2}+\frac{x^2}{4-x^2}\right)+\frac{5}{2}\left(\frac{\sqrt{4-x^2}}{x}+\frac{x}{\sqrt{4-x^2}}\right)+2=0\)
\(\Leftrightarrow\left(\frac{\sqrt{4-x^2}}{x}+\frac{x}{\sqrt{4-x^2}}\right)^2-1+\frac{5}{2}\left(\frac{\sqrt{4-x^2}}{x}+\frac{x}{\sqrt{4-x^2}}\right)+2=0\)
Đặt \(\frac{\sqrt{4-x^2}}{x}+\frac{x}{\sqrt{4-x^2}}=t\)pt thành
\(t^2-1+\frac{5}{2}t+2=0\)\(\Rightarrow\orbr{\begin{cases}t=-2\\t=-\frac{1}{2}\end{cases}}\)(loại)
-->PT vô nghiệm
Thắng Nguyễn \(\frac{4}{x^2}\) . T làm ra r , you k cần làm nữa đâu , thanks :))
Giải phương trình: \(\left(\frac{x+2}{x+1}\right)^2+\left(\frac{x-2}{x-1}\right)^2-\frac{5}{2}.\frac{x^2-4}{x^2-1}=0\)
Giải phương trình sau \(20\left(\frac{x-2}{x+1}\right)^2-5.\left(\frac{x+2}{x-1}\right)^2+48.\frac{x^2-4}{x^2-1}=0\)0
Giải phương trình sau
\(\frac{x-1}{x-2}+\frac{x-2}{x-1}-\frac{x^2}{\left(x-1\right)\left(x-1\right)}=0\) 0
Giải phương trình \(\frac{x}{x^2-x-2}-\frac{3x}{x^2-5x-2}-2=0\)
giải hệ phương trình\(\hept{\begin{cases}x+y=-6\\\sqrt{\frac{y+2}{2x-1}}+\sqrt{\frac{2x-1}{y+2}}=2\end{cases}}\)
giải phương trình \(\frac{6}{x^2-9}+\frac{4}{x^2-11}-\frac{7}{x^2-8}-\frac{3}{x^2-12}=0\)
Câu 2/
Điều kiện xác định b tự làm nhé:
\(\frac{6}{x^2-9}+\frac{4}{x^2-11}-\frac{7}{x^2-8}-\frac{3}{x^2-12}=0\)
\(\Leftrightarrow x^4-25x^2+150=0\)
\(\Leftrightarrow\left(x^2-10\right)\left(x^2-15\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x^2=10\\x^2=15\end{cases}}\)
Tới đây b làm tiếp nhé.
a. ĐK: \(\frac{2x-1}{y+2}\ge0\)
Áp dụng bđt Cô-si ta có: \(\sqrt{\frac{y+2}{2x-1}}+\sqrt{\frac{2x-1}{y+2}}\ge2\)
\(\)Dấu bằng xảy ra khi \(\frac{y+2}{2x-1}=1\Rightarrow y+2=2x-1\Rightarrow y=2x-3\)
Kết hợp với pt (1) ta tìm được x = -1, y = -5 (tmđk)
b. \(pt\Leftrightarrow\left(\frac{6}{x^2-9}-1\right)+\left(\frac{4}{x^2-11}-1\right)-\left(\frac{7}{x^2-8}-1\right)-\left(\frac{3}{x^2-12}-1\right)=0\)
\(\Leftrightarrow\left(15-x^2\right)\left(\frac{1}{x^2-9}+\frac{1}{x^2-11}+\frac{1}{x^2-8}+\frac{1}{x^2-12}\right)=0\)
\(\Leftrightarrow x^2-15=0\Leftrightarrow\orbr{\begin{cases}x=\sqrt{15}\\x=-\sqrt{15}\end{cases}}\)
giải phương trình: \(\left(\frac{x+1}{x-2^2}\right)^2+\frac{x+1}{x-4}-12\cdot\left(\frac{x-2}{x-4}\right)^2=0\)
Giải phương trình: \(x^2+\frac{1}{x^2}+\frac{9}{2}\left(x+\frac{1}{x}\right)+7=0\)\(0\)
ĐẶt x+1/x = m
suy ra x2+1/x2=m2-2
Vậy m2-2+9/2m+7=0
2m2+9m+10=0
(2m2+4m) +(5m+10)=0
2m(m+2)+5(m+2)=0
\(\Leftrightarrow\orbr{\begin{cases}m+2=0\\2m+5=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}m=-2\\m=\frac{-5}{2}\end{cases}}\)
Với m=-2
x+1/x=-2 hay x2+2x+1=0
x=-1
Với m=-5/2 làm tương tự