Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyen Thi Thanh Thao
Xem chi tiết
Zye Đặng
9 tháng 7 2017 lúc 11:04

Viết lại thành : \(\dfrac{x}{\dfrac{3}{2}}=\dfrac{y}{\dfrac{4}{3}}=\dfrac{z}{\dfrac{5}{4}}\)

Dựa theo tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{x+y+z}{\dfrac{3}{2}+\dfrac{4}{3}+\dfrac{5}{4}}=\dfrac{49}{\dfrac{49}{12}}=12\)

-> x = \(12.\dfrac{3}{2}=18\)

y =\(12.\dfrac{4}{3}=16\)

z =\(12.\dfrac{5}{4}\) = 15

Linh Le
Xem chi tiết
Nguyễn Phương HÀ
13 tháng 8 2016 lúc 10:34

A=\(\frac{3}{x-1}\)

muốn A nguyên thì x-1=Ư(3)={-1,1,3,-3}

x-1=1=>x=2

x-1=-1=>x=0

x-1=3=>x=4

x-1=-3=>x=-2

KL:...

B=\(x+\frac{2}{x+3}\)

muốn B nguyên thì x+3 =Ư(2)={1,2,-1,-2}

x+3=1=>x=-2

x+3=-1=>x=-4

x+3=2=>x=-1

x+3=-2=>x=-5

C=\(\frac{2x+1}{x-3}=2+\frac{7}{x-3}\)

muốn C nguyên thì x-3 =Ư(7)={-1,-7,1,7}

x-3=-1=>x=2

x-3=1=>x=4

x-3=-7=>x=-4

x-3=7=>x=10

 

Nguyễn Phương HÀ
13 tháng 8 2016 lúc 10:37

D=\(\frac{x^2-1}{x+1}\)

=x-1 muốn D nguyen thì x nguyên

kl: X thuộc Z

Nguyễn Mạnh Hùng
Xem chi tiết
Mai Linh
7 tháng 5 2016 lúc 12:18

y=\(\frac{x^4-2x^3+1}{x^2+1}\)=\(x^2\)-2x-1 + \(\frac{2x+2}{x^2+1}\)=\(x^2\)-2x-1 + \(\frac{2\left(x+1\right)}{x^2+1}\)

vì x và y đều nguyên nên \(x^2\)+1 phải là ước của x+1

vì x+1 <= \(x^2\)+1 

nên ta có \(x^2\)+1 = x+1

          =>  x=0 hoặc x=1

với x=0 thì y=1

với x=1 thì y =0

vậy ta có (x;y)=(0;1); (1;0)

Nguyễn Khắc Tùng Lâm
Xem chi tiết
tthnew
26 tháng 6 2019 lúc 8:11

5/ Tưỡng dễ ăn = sos + bđt phụ ai ngờ....hic...

\(BĐT\Leftrightarrow\Sigma_{cyc}\left(\frac{a^2+b^2+c^2}{a+b+c}-\frac{a^2+b^2}{a+b}\right)\ge0\)

\(\Leftrightarrow\Sigma_{cyc}\left(\frac{\left(a^2+b^2+c^2\right)\left(a+b\right)-\left(a^2+b^2\right)\left(a+b+c\right)}{\left(a+b+c\right)\left(a+b\right)}\right)\ge0\)

\(\Leftrightarrow\Sigma_{cyc}\frac{ca\left(c-a\right)-bc\left(b-c\right)}{\left(a+b+c\right)\left(a+b\right)}\ge0\)\(\Leftrightarrow\Sigma_{cyc}\left(\frac{ca\left(c-a\right)}{\left(a+b+c\right)\left(a+b\right)}-\frac{ca\left(c-a\right)}{\left(a+b+c\right)\left(b+c\right)}\right)\ge0\)

\(\Leftrightarrow\Sigma_{cyc}\frac{ca\left(c-a\right)^2}{\left(a+b+c\right)}\ge0\left(\text{đúng}\right)\)

Ai ngờ nổi khi không dùng BĐT phụ lại dễ hơn cái kia chứ -_-

tthnew
26 tháng 6 2019 lúc 8:14

Ây za,nhầm dòng cuối cùng xíu ạ:

\(\Leftrightarrow\Sigma_{cyc}\frac{ca\left(c-a\right)^2}{\left(a+b+c\right)\left(a+b\right)\left(b+c\right)}\ge0\left(\text{đúng}\right)\) -_- đánh thiếu một chút lại ra nông nỗi -_-

Akai Haruma
27 tháng 6 2019 lúc 18:44

Bài 1:

Xét các hiệu sau:

\(M=x^3+y^3+z^3-(x^2+y^2+z^2)=x^2(x-1)+y^2(y-1)+z^2(z-1)\)

\(N=x^4+y^4+z^4-(x^3+y^3+z^3)=x^3(x-1)+y^3(y-1)+z^3(z-1)\)

Lấy $N-M$:

\( N-M=\sum x^2(x-1)(x-1)=\sum x^2(x-1)^2\geq 0\)

\(\Leftrightarrow \sum x^4-2\sum x^3+\sum x^2\geq 0\)

\(\Rightarrow \sum x^4\geq 2\sum x^3-\sum x^2(*)\)

\(P=x^5+y^5+z^5-(x^4+y^4+z^4)=x^4(x-1)+y^4(y-1)+z^4(z-1)\)

Lấy $P-M$

\(P-M=\sum x^2(x-1)(x^2-1)=\sum x^2(x-1)^2(x+1)\geq 0, \forall x,y,z>-1\)

\(\Leftrightarrow \sum x^5-\sum x^4-\sum x^3+\sum x^2\geq 0\)

\(\Leftrightarrow \sum x^5\geq \sum x^4+\sum x^3-\sum x^2\). Kết hợp với (*) và điều kiện ban đầu suy ra:

\(\sum x^5\geq 2\sum x^3-\sum x^2+\sum x^3-\sum x^2=3\sum x^3-2\sum x^2\geq \sum x^2\)

l҉o҉n҉g҉ d҉z҉
Xem chi tiết
Tran Le Khanh Linh
26 tháng 7 2020 lúc 21:33

chứng minh \(\frac{3}{2}\ge\frac{x}{1+x^2}+\frac{y}{1+y^2}+\frac{z}{1+z^2}\)

ta có \(\left(x-1\right)^2\ge0\Leftrightarrow x^2+1\ge2x\Leftrightarrow\frac{2x}{1+x^2}\le1\)

\(\left(y-1\right)^2\ge0\Leftrightarrow y^2+1\ge2y\Leftrightarrow\frac{2y}{1+y^2}\le1\)

\(\left(z-1\right)^2\ge0\Leftrightarrow z^2+1\ge2z\Leftrightarrow\frac{2z}{1+z^2}\le1\)

\(\Rightarrow\frac{2x}{1+x^2}+\frac{2y}{1+y^2}+\frac{2x}{1+z^2}\le3\Leftrightarrow\frac{x}{1+x^2}+\frac{y}{1+y^2}+\frac{z}{1+z^2}\le\frac{3}{2}\)

chứng minh \(\frac{1}{1+x}+\frac{1}{1+y}+\frac{1}{1+z}\ge\frac{3}{2}\)

áp dụng bất đẳng thức Cauchy ta có: 

\(\frac{1}{1+x}+\frac{1}{1+y}+\frac{1}{1+z}\ge3\sqrt[3]{\frac{1}{\left(1+x\right)\left(1+y\right)\left(1+z\right)}}=\frac{3}{\sqrt{\left(1+x\right)\left(1+y\right)\left(1+z\right)}}\)

ta lại có \(\frac{\left(1+x\right)\left(1+y\right)\left(1+z\right)}{3}\ge\sqrt[3]{\left(1+x\right)\left(1+y\right)\left(1+z\right)}\)

vậy \(\frac{1}{1+x}+\frac{1}{1+y}+\frac{1}{1+z}\ge\frac{3}{\frac{\left(1+x\right)+\left(1+y\right)+\left(1+z\right)}{3}}=\frac{3}{2}\)

kết hợp ta có \(\frac{x}{1+x^2}+\frac{y}{1+y^2}+\frac{z}{1+z^2}\le\frac{3}{2}\le\frac{1}{1+x}+\frac{1}{1+y}+\frac{1}{1+z}\)

Khách vãng lai đã xóa
Nguyen Thi Thanh Thao
Xem chi tiết
Ngô Tấn Đạt
17 tháng 8 2016 lúc 20:35

\(a\left(x-\frac{1}{2}\right)^3=\frac{1}{27}\\ =>\left(x-\frac{1}{2}\right)=\frac{1}{3}\\ =>x=\frac{1}{3}+\frac{1}{2}\\ =>x=\frac{5}{6}\)

b) \(\left(x+\frac{1}{2}\right)^2=\frac{4}{25}\\ =>\left(x+\frac{1}{2}\right)=\frac{2}{5}\\ =>x=\frac{-1}{10}\)

d) (2x+3)2016=(2x+3)2018 khi 2x+3=0 hoặc 1 

Nếu 2x+3=0 

=2x=-3 ( loại ) 

Nếu 2x+3=1

=>2x=-2

=>x=-1 ( thỏa ) 

 

オタク Yuuki
Xem chi tiết
Thắng Nguyễn
6 tháng 4 2017 lúc 22:30

Áp dụng BĐT \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{d}\ge\frac{\left(1+1+1+1\right)^2}{a+b+c+d}=\frac{16}{a+b+c+d}\) ta có: 

\(\frac{16}{2x+3y+3z}\le\frac{1}{x+y}+\frac{1}{x+y}+\frac{1}{x+z}+\frac{1}{y+z}\)

\(\frac{16}{3x+2y+3z}\le\frac{1}{x+z}+\frac{1}{x+z}+\frac{1}{x+y}+\frac{1}{y+z}\)

\(\frac{16}{2x+3y+3z}\le\frac{1}{y+z}+\frac{1}{y+z}+\frac{1}{x+y}+\frac{1}{x+z}\)

Cộng theo vế 3 BĐT trên ta có: 

\(16\left(\frac{1}{2x+3y+3z}+\frac{1}{3x+2y+3z}+\frac{1}{3x+3y+2z}\right)\)

\(\le4\left(\frac{1}{x+y}+\frac{1}{y+z}+\frac{1}{x+z}\right)=4\cdot12=48\)

\(\Rightarrow\frac{1}{2x+3y+3z}+\frac{1}{3x+2y+3z}+\frac{1}{3x+3y+2z}\le3\)

オタク Yuuki
6 tháng 4 2017 lúc 19:43

các bạn có thể giúp mình giải bài toán này  bằng bất đẳng thức \(\frac{1}{x+y}+\frac{1}{y+z}+\frac{1}{z+x}\le\frac{9}{2\left(x+y+z\right)}\)

lý canh hy
Xem chi tiết
lý canh hy
Xem chi tiết