Tính giá trị biểu thức
E=\(\frac{3x+5y}{2y+9}\)+\(\frac{2x-3y}{5x-9}\) với x+y=3; x\(\ne\)\(\frac{9}{5}\), y\(\ne\)\(\frac{-9}{2}\)
Giúp mik vs nhé, mình vội quá
E=\(\frac{3x+5y}{2y+9}\)+\(\frac{2x-3y}{5x-9}\) với x+y=3;x\(\ne\frac{9}{5}\) ; y\(\ne\frac{-9}{2}\)
Tính giá trị của E nha mn
E=3x+5y/2y+9 + 2x-3y/5x-9 với x+y=3 ; x khác 9/5; y khác -9/2 . Tính giá trị của B
cho các số dương x,y,z tỉ lệ với 3,4,5. Tính giá trị của biểu thức
\(P=\frac{x+2y+3x}{2x+3y+4z}+\frac{2x+3y+4z}{3x+4y+5z}+\frac{3x+4y+5z}{4x+5y+6z}\)
Theo đề ta có: \(x:y:z=3:4:5\Rightarrow\frac{x}{3}=\frac{y}{4}=\frac{z}{5}\)
Đặt: \(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}=k\left(k\inℕ^∗\right)\)
Suy ra: \(x=3k;y=4k;z=5k\) Thay vào biểu thức P ta có:
\(P=\frac{3k+8k+15k}{6k+12k+20k}+\frac{6k+12k+20k}{9k+16k+25k}+\frac{9k+16k+25k}{12k+20k+30k}\)
\(P=\frac{26k}{38k}+\frac{38k}{50k}+\frac{50k}{62k}=\frac{13}{19}+\frac{19}{25}+\frac{25}{31}=\frac{33141}{14725}\)
Cho các số x,y,z khác thỏa mãn $\frac{2x-3y}{5}$ =$\frac{5y-2z}{3}$ =$\frac{3z-5x}{2}$
Tính giá trị biểu thức B=$\frac{12x+5y-3z}{x-3y+2z}$
1/ phân tích đa thức thành Nhân tử
a. (2x + y) ^3 - 16( 2x-y)
b. 25( x+ 2y) ^2 - 16 (2x- y)
c. 4/9 ( x -3y) ^2 - 0.04 (x+y) ^2
2/ tính giá trị của biểu thức
A= x^3y^2 - x^2y^3 - 2x + 2y tại x= -1, y = -2
B= 5x^2 - 3x + 3y - 5y^2 tại x=3, y= 1
C= -x^2 + 5x - 2xy + 10y tại x=2 và y=1
3/ tìm GTNN của biểu thức
A=x^2 - 2x -6
B=9x^2 - 6x
C= x^2 + 12x
D= 4x^2 + 5x
E= 5x^2 - 4√5x + 7
Nhờ các bạn giúp mình nhé, 2/9 là mình cần lắm rồi, thanks
C= \(\frac{3x+5y}{2y+9}\) + \(\frac{2x-3y}{5x-9}\) Với x+y=3; x khác \(\frac{9}{5}\) ; y khác \(\frac{-9}{2}\)
1. Tính giá trị biểu thức
A = \(\frac{5x^2+3y^2}{10x^2-3y^2}\)biết rằng \(\frac{x}{3}=\frac{y}{5}\)
2. Tìm x,y,z thỏa \(\frac{x}{y}=\frac{7}{10};\frac{y}{z}=\frac{5}{8}\)và 2x+5y-2z=9
1.Tính giá trị của biểu thức: A=\(\frac{5x^2+3y^2}{10x^2-3y^2}\left(1\right)biết\frac{x}{3}=\frac{y}{5}suyra:5x=3y;suyra:x=\frac{3y}{5};thayvào\left(1\right)taco:\frac{5\left(\frac{3y}{5}\right)^2+3y^2}{10\left(\frac{3y}{5}\right)^2-3y^2}=\frac{\frac{9y^2}{5}+3y^2}{\frac{18y^2}{5}-3y^2}=\frac{24y^2}{5}\cdot\frac{5}{3y^2}=8\)
2.\(\frac{x}{y}=\frac{7}{10}suyra;\frac{x}{7}=\frac{y}{10}\left(1\right)và\frac{y}{z}=\frac{5}{8}suyra;\frac{y}{5}=\frac{z}{8}suyra;\frac{y}{5}\cdot\frac{1}{2}=\frac{z}{8}\cdot\frac{1}{2}suyra;\frac{y}{10}=\frac{z}{16}\left(2\right)Tù\left(1\right)và\left(2\right)suyra\frac{x}{7}=\frac{y}{10}=\frac{z}{16}và2x+5y-2z=9;suyra:\frac{2x}{14}=\frac{5y}{50}=\frac{2z}{32}ápdụngtínhchấtcủadãytỉsốbằngnhautacó\frac{2x}{14}=\frac{5y}{50}=\frac{2z}{32}=\frac{2x+5y-2z}{14+50-32}=\frac{9}{32}suyra;x=\frac{63}{32};y=\frac{45}{16};z=\frac{9}{2}\)
E=3x+5y/2y+9 + 2x-3y/5x-9 tại x+y=3; x khác 9/5, y khác -9/2
Cho tỉ lệ thức \(\dfrac{x}{y}=\dfrac{2}{3}\). Tính giá trị của các biểu thức sau:
\(A=\dfrac{x+5y}{3x-2y}-\dfrac{2x-3y}{4x+5y}\)
\(B=\dfrac{2x^2-xy+3y^2}{3x^2+2xy+y^2}\)
Lời giải:
$\frac{x}{y}=\frac{2}{3}\Rightarrow \frac{x}{2}=\frac{y}{3}$. Đặt $\frac{x}{2}=\frac{y}{3}=k$ thì:
$x=2k; y=3k$
Khi đó: $3x-2y=3.2k-3.2k=0$. Mẫu số không thể bằng $0$ nên $A$ không xác định. Bạn xem lại.
$B=\frac{2(2k)^2-2k.3k+3(3k)^2}{3(2k)^2+2.2k.3k+(3k)^2}=\frac{29k^2}{33k^2}=\frac{29}{33}$