Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Mai Hương
Xem chi tiết
HaNa
8 tháng 8 2023 lúc 22:07

PT vô nghiệm <=> \(\Delta'< 0\)

<=> \(\left(m+1\right)^2-2m^2-2m-1< 0\)

<=> \(m^2+2m+1-2m^2-2m-1< 0\)

<=> \(-m^2< 0\)

\(\Leftrightarrow m\ne0\)

Nguyễn Lê Phước Thịnh
8 tháng 8 2023 lúc 22:06

Δ=(2m+2)^2-4(2m^2+2m+1)

=4m^2+8m+4-8m^2-8m-4

=-4m^2

Để phương trình vô nghiệm thì -4m^2<0

=>m^2>0

=>m<>0

MoonLght
Xem chi tiết
Nguyễn Huy Tú
2 tháng 2 2022 lúc 13:33

Để pt (2) vô nghiệm khi 

\(\Delta'=m^2-4< 0\Leftrightarrow m^2< 4\Leftrightarrow-2< m< 2\)

Hồng Phượng Thái Thị
Xem chi tiết
Ami Mizuno
9 tháng 2 2022 lúc 14:53

Ta có: \(\Delta=4\left(m-3\right)^2-4.\left(m^2-1\right)\)

a. Để phương trình vô nghiệm thì \(\Delta< 0\Leftrightarrow\left(m-3\right)^2< m^2-1\Leftrightarrow m^2-6m+9< m^2-1\Leftrightarrow6m>10\Leftrightarrow m>\dfrac{10}{6}=\dfrac{5}{3}\)

b. Để phương trình có nghiệm thì: 

\(\Delta\ge0\Leftrightarrow\left(m-3\right)^2\ge m^2-1\Leftrightarrow m^2-6m+9\ge m^2-1\Leftrightarrow6m\le10\Leftrightarrow m\le\dfrac{10}{6}=\dfrac{5}{3}\)

c. Để phương trình có nghiệm kép thì:

\(\Delta=0\Leftrightarrow\left(m-3\right)^2=m^2-1\Leftrightarrow m^2-6m+9=m^2-1\Leftrightarrow6m=10\Leftrightarrow m=\dfrac{10}{6}=\dfrac{5}{3}\)

Nghiệm kép của phương trình là: \(\dfrac{-b}{2a}=\dfrac{2\left(m-3\right)}{2.1}=\dfrac{2\left(\dfrac{5}{3}-3\right)}{2}=-\dfrac{4}{3}\)

 

d. Để phương trình có nghiệm phân biệt thì:

\(\Delta>0\Leftrightarrow\left(m-3\right)^2>m^2-1\Leftrightarrow m^2-6m+9>m^2-1\Leftrightarrow6m< 10\Leftrightarrow m< \dfrac{10}{6}=\dfrac{5}{3}\)

Nguyễn Huy Tú
9 tháng 2 2022 lúc 14:55

a, Để pt vô nghiệm 

\(\Delta'=\left(m-3\right)^2-\left(m^2-1\right)=-6m+9+1=-6m+10< 0\Leftrightarrow m>\dfrac{5}{3}\)

b, Để pt có nghiệm 

\(\Delta'=-6m+10\ge0\Leftrightarrow m\le\dfrac{5}{3}\)

c, Để pt có nghiệm kép 

\(\Delta'=-6m+10=0\Leftrightarrow m=\dfrac{5}{3}\)

\(x_1=x_2=\dfrac{2\left(m-3\right)}{2}=m-3\)

d, Để pt có 2 nghiệm pb 

\(\Delta=-6m+10>0\Leftrightarrow m< \dfrac{5}{3}\)

Mai Hương
Xem chi tiết
Nguyễn Lê Phước Thịnh
8 tháng 8 2023 lúc 20:32

a: Khi m=-1 thì phương trình sẽ là:

x^2-(-3-1)x+2-1-1=0

=>x^2+4x=0

=>x=0 hoặc x=-4

꧁❥Hikari-Chanツ꧂
Xem chi tiết
Nguyễn Việt Lâm
5 tháng 7 2021 lúc 18:36

a.

Khi \(m=2\) pt trở thành:

\(2x+3=0\Rightarrow x=-\dfrac{3}{2}\)

b.

Để pt có nghiệm \(x=-1\)

\(\Rightarrow\left(m^2-m\right).\left(-1\right)+m^2-1=0\)

\(\Leftrightarrow-m^2+m+m^2-1=0\)

\(\Leftrightarrow m-1=0\)

\(\Leftrightarrow m=1\)

c.

Pt tương đương:

\(\left(m^2-m\right)x=-\left(m^2-1\right)\)

\(\Leftrightarrow m\left(m-1\right)x=-\left(m-1\right)\left(m+1\right)\)

Pt vô nghiệm khi:

\(\left\{{}\begin{matrix}m\left(m-1\right)=0\\-\left(m-1\right)\left(m+1\right)\ne0\end{matrix}\right.\) \(\Leftrightarrow m=0\)

\(\Rightarrow\) pt có nghiệm khi \(m\ne0\)

Pt có vô số nghiệm khi:

\(\left\{{}\begin{matrix}m\left(m-1\right)=0\\-\left(m-1\right)\left(m+1\right)=0\end{matrix}\right.\) \(\Leftrightarrow m=1\)

Akai Haruma
5 tháng 7 2021 lúc 18:40

Lời giải:

a. Khi $m=2$ thì pt trở thành:

$2x+3=0\Leftrightarrow x=-\frac{3}{2}$

b. Để pt có nghiệm $x=-1$ thì:

$(m^2-m).(-1)+m^2-1=0$

$\Leftrightarrow m-1=0\Leftrightarrow m=1$

c. 

PT $\Leftrightarrow (m^2-m)x=1-m^2$

Để pt vô nghiệm thì: \(\left\{\begin{matrix} m^2-m=0\\ 1-m^2\neq 0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} m(m-1)=0\\ (1-m)(1+m)\neq 0\end{matrix}\right.\) 

\(\Leftrightarrow m=0\)

PT có vô số nghiệm khi \(\left\{\begin{matrix} m^2-m=0\\ 1-m^2= 0\end{matrix}\right.\Leftrightarrow m=1\)

Để PT có nghiệm thì: $m\neq 0$

 

Mai Hương
Xem chi tiết
Nguyễn Lê Phước Thịnh
8 tháng 8 2023 lúc 22:15

a: khi m=1 thì pt sẽ là:

x^2+3x+1=0

=>\(x=\dfrac{-3\pm\sqrt{5}}{2}\)

b: Δ=(2m+1)^2-4m^2

=4m+1

Để phương trình có nghiệm kép thì 4m+1=0

=>m=-1/4

Khi m=-1/4 thì pt sẽ là:

x^2+x*(-1/4*2+1)+(-1/4)^2=0

=>x^2+1/2x+1/16=0

=>(x+1/4)^2=0

=>x+1/4=0

=>x=-1/4

Đỗ Sử Nam Phương
Xem chi tiết
missing you =
26 tháng 11 2021 lúc 19:06

\(a,x^2-\left(2m-3\right)x+m^2=0-vô-ngo\)

\(\Leftrightarrow\Delta< 0\Leftrightarrow[-\left(2m-3\right)]^2-4m^2< 0\Leftrightarrow m>\dfrac{3}{4}\)

\(b,\left(m-1\right)x^2-2mx+m-2=0\)

\(m-1=0\Leftrightarrow m=1\Rightarrow-2x-1=0\Leftrightarrow x=-0,5\left(ktm\right)\)

\(m-1\ne0\Leftrightarrow m\ne1\Rightarrow\Delta'< 0\Leftrightarrow\left(-m\right)^2-\left(m-2\right)\left(m-1\right)< 0\Leftrightarrow m< \dfrac{2}{3}\)

\(c,\left(2-m\right)x^2-2\left(m+1\right)x+4-m=0\)

\(2-m=0\Leftrightarrow m=2\Rightarrow-6x+2=0\Leftrightarrow x=\dfrac{1}{3}\left(ktm\right)\)

\(2-m\ne0\Leftrightarrow m\ne2\Rightarrow\Delta'< 0\Leftrightarrow[-\left(m+1\right)]^2-\left(4-m\right)\left(2-m\right)< 0\Leftrightarrow m< \dfrac{7}{8}\)

 

 

 

Nott mee
Xem chi tiết
Nguyễn Lê Phước Thịnh
2 tháng 1 2022 lúc 10:04

b: Để phương trình có hai nghiệm trái dấu thì (m+2)(m-4)<0

=>-2<m<4

 

đặng thị thu thủy
Xem chi tiết
☆Châuuu~~~(๑╹ω╹๑ )☆
4 tháng 2 2022 lúc 11:18

\(a,m=1\Rightarrow x^2+x-1=0\\ \Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{-1+\sqrt{5}}{2}\\x=\dfrac{-1-\sqrt{5}}{2}\end{matrix}\right.\\ b,\Delta=\left(2m-1\right)^2+4m=\left(2m\right)^2-4m+1+4m\\ =4m^2+1>0\forall m\)  

--> Phương trình luôn có 2 nghiệm phân biệt

--> Không có giá trị m để pt vô nghiệm

Nguyễn Huy Tú
4 tháng 2 2022 lúc 11:20

a, Thay m = 1 vào pt trên ta được 

\(x^2+x-1=0\)

\(\Delta=1-4\left(-1\right)=1+5>0\)

Vậy pt luôn có 2 nghiệm pb 

\(x_1=\dfrac{-1-\sqrt{6}}{2};x_2=\dfrac{-1+\sqrt{6}}{2}\)

b, Ta có : \(\Delta=\left(2m-1\right)^2-4\left(-m\right)=4m^2+1< 0\)( vô lí )

Do \(4m^2\ge0\forall m\Rightarrow4m^2+1>0\forall m\)

hay ko có gtri nào của m để pt vô nghiệm