cho f(x) là đa thức bậc 4. Chứng minh rằng f(x)=f(-x) thì các hệ số mũ lẻ đều bằng 0
Cho f(x) là một đa thức bậc 4.Biết f(x)=f(-x) với mọi x thuộc R.Chứng minh rằng các hệ số của lũy thừa đều bằng 0
Ta có f(x)=ax4+bx3+cx2+dx+e
= a(-x)4+b(-x)3+c(-x)2+d(-x)+e
Hay ax4+bx3+cx2+dx+e=a(-x)4+b(-x)3+c(-x)2+d(-x)+e
bx3+dx=-bx3-dx;2bx3=-2dx;bx3=-dx với mọi x suy ra b=d=0 tức là các hệ số của lũy thừa lẻ đều bằng 0
201. Cho \(f\left(x\right)\)là một đa thức bậc 4. Biết \(f\left(x\right)=f\left(-x\right)\)với mọi \(x\in R\), chứng minh rằng các hệ số của lũy thừa lẻ đều bằng 0.
Giải nhanh cho tick
gọi đa thức f ( x )= a x^4 + bx^3+c x ^2 + d x +e = a x^4 - bx^3+cx^2-dx+e
áp dụng hệ số bất định => b = -b ; d=-d => b=0;d=0 => đpcm
cho f(x ) là 1 đa thức có bậc 4 bít f(x ) bằng f( -x ) với mọi x thuộc R . CM các hệ số của lũy thừa lẻ đều bằng 0
cho x la 1 đa thức bậc 4 biết f(x)=f(-x) cmr các hệ số của lũy thừa lẻ đều bằng 0
cho x la 1 đa thức bậc 4 biết f(x)=f(-x) cmr các hệ số của lũy thừa lẻ đều bằng 0
f(x)=ax^4+bx^3+cx^2+dx+e, vì f(x)=f(-x) nên ax^4+bx^3+cx^2+dx+e=a(-x)^4+b(-x)^3+c(-x)^2+d(-x)+e
suy ra 2b.x^3+2d.x=0, suy ra b=d=0
Cho \(f\left(x\right)\) là một đa thức bậc 4. Biết \(f\left(x\right)=f\left(-x\right)\) với mọi \(x\in R\), chứng minh rằng cac hệ số của lũy thừa lẻ đều bằng 0.
x phải khác 0 nhỉ tại đâu có số nào là -0
cho f(x) là đa thức có hệ số nguyên.Biết f(0) và f(1) là các số lẻ, chứng minh rằng đa thức f(x) không có nghiệm nguyên
Câu hỏi của Lê Minh Đức - Toán lớp 9 - Học toán với OnlineMath
Em có thể tham khảo bài tương tự tại đây nhé.
Bài 1: Chứng minh rằng số dư trong phép chia đa thức f(x) cho nhị thức x - a bằng giá trị đa thức ấy tại x = a
Bài 2: Cho \(\text{f(x)}=a_0x^4+a_1x^3+a_2x^2+a_3x+a_4\)
Chứng minh: a) f(x) \(⋮\)x - 1 nếu tổng các hệ số = 0
b) f(x) \(⋮\)x + 1 nếu tổng các hệ số của hạng tử bậc chẵn = tổng các hệ số của hạng tử bậc lẻ
Cho f(x) là đa thức bậc 4 với hệ số nguyên. Chứng minh rằng f(x) chia hết cho 7 với mọi x thì từng hệ số của f(x) chia hết cho 7
Gọi \(P\left(x\right)=ax^4+bx^3+cx^2+dx+e\)
Theo bài ta có : \(P\left(x\right)⋮7\Rightarrow\hept{\begin{cases}P\left(0\right)⋮7\\P\left(1\right)⋮7\\P\left(-1\right)⋮7\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}e⋮7\\a+b+c+d+e⋮7\\a-b+c-d+e⋮7\end{cases}}\) \(\Leftrightarrow\hept{\begin{cases}a+b+c+d⋮7\\a-b+c-d⋮7\end{cases}}\) \(\Leftrightarrow\hept{\begin{cases}a+c⋮7\\b+d⋮7\end{cases}}\)
Mặt khác ta có : \(P\left(2\right)=16a+8b+4c+d+e⋮7\)
\(\Leftrightarrow2a+b+4c+d⋮7\)
\(\Leftrightarrow2\left(a+c\right)+b+d+2c⋮7\)
\(\Leftrightarrow2c⋮7\Leftrightarrow c⋮7\Leftrightarrow a⋮7\)
Chứng minh tương tự thì ta có \(a,b,c,d,e⋮7\). Ta có đpcm.