Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
lamborghini
Xem chi tiết
๖²⁴ʱĤỌČ✎
20 tháng 10 2018 lúc 19:47

Ta có f(x)=ax4+bx3+cx2+dx+e

               = a(-x)4+b(-x)3+c(-x)2+d(-x)+e

Hay ax4+bx3+cx2+dx+e=a(-x)4+b(-x)3+c(-x)2+d(-x)+e

bx3+dx=-bx3-dx;2bx3=-2dx;bx3=-dx với mọi x suy ra b=d=0 tức là các hệ số của lũy thừa lẻ đều bằng 0

Thái Viết Nam
Xem chi tiết
lê dạ quỳnh
12 tháng 6 2017 lúc 21:29

gọi đa thức   f ( x )= a x^4 + bx^3+c x ^2 + d x +e = a x^4 - bx^3+cx^2-dx+e 

       áp dụng hệ số bất định => b = -b ; d=-d => b=0;d=0 => đpcm

Nguyen Thi Mai Anh
Xem chi tiết
Võ Thành Vinh
Xem chi tiết
Võ Thành Vinh
Xem chi tiết
Nguyen Van Thanh
27 tháng 1 2016 lúc 17:40

f(x)=ax^4+bx^3+cx^2+dx+e, vì f(x)=f(-x) nên ax^4+bx^3+cx^2+dx+e=a(-x)^4+b(-x)^3+c(-x)^2+d(-x)+e

suy ra 2b.x^3+2d.x=0, suy ra b=d=0

Lovers
Xem chi tiết
Đặng Minh Triều
20 tháng 2 2016 lúc 14:54

x phải khác 0 nhỉ tại đâu có số nào là -0

Lovers
20 tháng 2 2016 lúc 14:54

-_- 

Lovers
20 tháng 2 2016 lúc 14:54

0= -0 mà

Vinh Lê Thành
Xem chi tiết
Do Thi Len
12 tháng 10 lúc 20:20

Câu hỏi của Lê Minh Đức - Toán lớp 9 - Học toán với OnlineMath

Em có thể tham khảo bài tương tự tại đây nhé.

Luyen Hoang Khanh Linh
Xem chi tiết
Iteawon Class
Xem chi tiết
Trí Tiên亗
14 tháng 8 2020 lúc 11:37

Gọi \(P\left(x\right)=ax^4+bx^3+cx^2+dx+e\)

Theo bài ta có : \(P\left(x\right)⋮7\Rightarrow\hept{\begin{cases}P\left(0\right)⋮7\\P\left(1\right)⋮7\\P\left(-1\right)⋮7\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}e⋮7\\a+b+c+d+e⋮7\\a-b+c-d+e⋮7\end{cases}}\) \(\Leftrightarrow\hept{\begin{cases}a+b+c+d⋮7\\a-b+c-d⋮7\end{cases}}\) \(\Leftrightarrow\hept{\begin{cases}a+c⋮7\\b+d⋮7\end{cases}}\)

Mặt khác ta có : \(P\left(2\right)=16a+8b+4c+d+e⋮7\)

\(\Leftrightarrow2a+b+4c+d⋮7\)

\(\Leftrightarrow2\left(a+c\right)+b+d+2c⋮7\)

\(\Leftrightarrow2c⋮7\Leftrightarrow c⋮7\Leftrightarrow a⋮7\)

Chứng minh tương tự thì ta có \(a,b,c,d,e⋮7\). Ta có đpcm.

Khách vãng lai đã xóa