Cho biểu thức H = \(\frac{2x^2+2x}{x^2-1}+\frac{1}{\sqrt{x}+1}-\frac{1}{\sqrt{x}-1}\) với x >= 0;x\(\ne\)1
a)Rút gọn biểu thức
b)Tìm tất cả giá trị của x để \(\sqrt{x}\)-H<0
1)Cho biểu thức M = \(\left(\frac{2x\sqrt{x}+x-\sqrt{x}}{x\sqrt{x}-1}-\frac{x+\sqrt{x}}{x-1}\right).\frac{x-1}{2x+\sqrt{x}-1}+\frac{\sqrt{x}}{2\sqrt{x}-1}\)
rút gọn M
2)cho biểu thức A = \(\frac{x^2+\sqrt{x}}{x-\sqrt{x}+1}+1-\frac{2x+\sqrt{x}}{\sqrt{x}}\)
rút gọn A
Cho biểu thức: \(A=\frac{x-2\sqrt{x}}{x\sqrt{x}-1}+\frac{\sqrt{x}+1}{x\sqrt{x}+x+\sqrt{x}}+\frac{1+2x-2\sqrt{x}}{x^2-\sqrt{x}}\) với \(x>0,x\ne1\)
Rút gọn biểu thức A
\(\frac{4+\sqrt{X}}{7}\)
Cho biểu thức \(\frac{x^2-\sqrt{x}}{x+\sqrt{x}+1}-\frac{2x+\sqrt{x}}{\sqrt{x}}+\frac{2\left(x-1\right)}{\sqrt{x}+1}\)
CMR 0<\(\frac{2\sqrt{x}}{P}\) <2 Vs 0<x khác 1
Bạn vt đề bài rõ ra nhé, mk RG trc rùi phần câu hỏi xem sau( P là j z?)
\(=\frac{\sqrt{x}\left(x\sqrt{x}-1\right)}{x+\sqrt{x}+1}-\frac{\sqrt{x}\left(2\sqrt{x}+1\right)}{\sqrt{x}}+\frac{2\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}{\sqrt{x}+1}\)
\(=\frac{\sqrt{x}\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}{x+\sqrt{x}+1}-2\sqrt{x}-1+2\sqrt{x}-2\)
\(=x-\sqrt{x}-3\)
Cho biểu thức \(K=\frac{\sqrt{x}+1}{\sqrt{x}+3}+\frac{\sqrt{x}-2}{\sqrt{x}-1}-\frac{2x-10}{x+2\sqrt{x}-3}\).Rút gọn biểu thức K và tìm các giá trị x để K>0
K=\(\frac{\sqrt{x}+1}{\sqrt{x}+3}+\frac{\sqrt{x}-2}{\sqrt{x}-1}-\frac{2x-10}{x+2\sqrt{x}-3}ĐK:\hept{\begin{cases}x\ge0\\x\ne1\end{cases}}\)
=\(\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)+\left(\sqrt{x}+2\right)\left(\sqrt{x}+3\right)-2x+10}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}\)
=\(\frac{x-1-2x+3\sqrt{x}-2\sqrt{x}-1-6+10}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}\)
=\(\frac{\sqrt{x}+3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}=\frac{1}{\sqrt{x}-1}\)
Để K>0 thì :\(\frac{1}{\sqrt{x}-1}>0\Leftrightarrow\sqrt{x}-1>0\Leftrightarrow x>1\)
Với x>1 thoả mãn yêu cầu.
Cho biểu thức: Q = \(\left(\frac{2x\sqrt{x}+x-\sqrt{x}}{x\sqrt{x}-1}-\frac{x+\sqrt{x}}{x-1}\right)\frac{x-1}{2x+\sqrt{x}-1}+\frac{\sqrt{x}}{2\sqrt{x}-1}\)với \(x\ge0,x\ne\frac{1}{4}v\text{à}x\ge1\)
1) Rút gon Q
2) Với giá trị nào của x thì biểu thức Q đạt giá trị nhỏ nhất. Tìm giá trị nhỏ nhất đó.
Giúp mik vs
Cho biểu thức:
\(M=\left(\frac{\sqrt{x}+1}{\sqrt{2x}+1}+\frac{\sqrt{2x}+\sqrt{x}}{\sqrt{2x}-1}-1\right)\)\(:\left(1+\frac{\sqrt{x}+1}{\sqrt{2x}+1}-\frac{\sqrt{2x}+\sqrt{x}}{\sqrt{2x}-1}\right)\)
a/ Rút gọn M
b/ Tính M khi \(x=\frac{1}{2}\left(3+2\sqrt{2}\right)\)
\(a,M=\left(\frac{\sqrt{x}+1}{\sqrt{2x}+1}+\frac{\sqrt{2x}+\sqrt{x}}{\sqrt{2x}-1}-1\right):\left(1+\frac{\sqrt{x}+1}{\sqrt{2x}+1}-\frac{\sqrt{2x}+\sqrt{x}}{\sqrt{2x}-1}\right)\)
\(=\left(\frac{2x-2\sqrt{2}x+2\sqrt{2x}-1}{2x-1}-1\right):\left(1+\frac{\sqrt{x}+1}{\sqrt{2x+1}}-\frac{\sqrt{2x}+\sqrt{x}}{\sqrt{2x}-1}\right)\)
\(=\left(\frac{-2\sqrt{2}x+2\sqrt{2x}}{2x-1}\right):\left(1+\frac{x\sqrt{2}-\sqrt{x}+\sqrt{2x}-1-\left(2x+\sqrt{2x}+x\sqrt{2}+\sqrt{x}\right)}{2x-1}\right)\)
\(=\left(\frac{-2\sqrt{2}x+2\sqrt{2x}}{2x-1}\right):\left(\frac{-2\sqrt{x}-2}{2x-1}\right)\)
\(=\frac{-\sqrt{2}x+\sqrt{2x}}{\sqrt{x}-1}\)
\(=\frac{-\sqrt{2x}\left(\sqrt{x}-1\right)}{\sqrt{x}-1}\)
\(=-\sqrt{2x}\)
\(b,x=\frac{1}{2}\left(3+2\sqrt{2}\right)\)
\(x=\frac{1}{2}\left(1+2\sqrt{2}+2\right)\)
\(x=\frac{1}{2}\left(1+\sqrt{2}\right)^2\)
Thay \(x=\frac{1}{2}\left(1+\sqrt{2}\right)^2\) vào \(M=-\sqrt{2x}\) ta được:
\(M=-\sqrt{2.\frac{1}{2}\left(1+\sqrt{2}\right)^2}\)
\(M=-1-\sqrt{2}\)
Vậy ..............
Bài 1: Cho biểu thức A = \(\frac{x}{x-4}-\frac{1}{2-\sqrt{x}}+\frac{1}{\sqrt{x+2}}\)
a) Rút gọn biểu thức
b) Tính giá trị khi \(|x|=25\)
Bài 2: Cho biểu thức B = \(\frac{\sqrt{x}}{\sqrt{x}-1}+\frac{3}{\sqrt{x}+1}+\frac{6\sqrt{x}-4}{1-x}\)
a) Rút gọn biểu thức
b) Tính giá trị biểu thức khi ( x2 + 1).( 2x - 8) =0
Mọi người giúp mk với ak
Bài 2:
ĐKXĐ: \(x\geq 0; x\neq 1\)
a)
\(B=\frac{\sqrt{x}(\sqrt{x}+1)+3(\sqrt{x}-1)}{(\sqrt{x}-1)(\sqrt{x}+1)}-\frac{6\sqrt{x}-4}{x-1}\)
\(=\frac{x+\sqrt{x}+3\sqrt{x}-3}{x-1}-\frac{6\sqrt{x}-4}{x-1}=\frac{x-2\sqrt{x}+1}{x-1}=\frac{(\sqrt{x}-1)^2}{(\sqrt{x}+1)(\sqrt{x}-1)}=\frac{\sqrt{x}-1}{\sqrt{x}+1}\)
b)
Khi \((x^2+1)(2x-8)=0\Rightarrow \left[\begin{matrix} x^2+1=0\\ 2x-8=0\end{matrix}\right.\Leftrightarrow \left[\begin{matrix} x^2=-1(\text{vô lý})\\ x=4(\text{thỏa mãn})\end{matrix}\right.\)
Với $x=4$:
\(B=\frac{\sqrt{4}-1}{\sqrt{4}+1}=\frac{1}{3}\)
Bài 1:
ĐKXĐ: \(x\geq 0; x\neq 4\)
a) \(A=\frac{x}{x-4}+\frac{1}{\sqrt{x}-2}+\frac{1}{\sqrt{x}+2}=\frac{x}{x-4}+\frac{\sqrt{x}+2+\sqrt{x}-2}{(\sqrt{x}-2)(\sqrt{x}+2)}\)
\(=\frac{x}{(\sqrt{x}-2)(\sqrt{x}+2)}+\frac{2\sqrt{x}}{(\sqrt{x}+2)(\sqrt{x}-2)}=\frac{x+2\sqrt{x}}{(\sqrt{x}+2)(\sqrt{x}-2)}=\frac{\sqrt{x}(\sqrt{x}+2)}{(\sqrt{x}+2)(\sqrt{x}-2)}\)
\(=\frac{\sqrt{x}}{\sqrt{x}-2}\)
b)
Khi \(|x|=25\Rightarrow \left[\begin{matrix} x=25\\ x=-25\end{matrix}\right.\). Mà $x\geq 0$ nên $x=25$
\(P=\frac{\sqrt{x}}{\sqrt{x}-2}=\frac{\sqrt{25}}{\sqrt{25}-2}=\frac{5}{3}\)
Bài 2:
ĐKXĐ: \(x\geq 0; x\neq 1\)
a)
\(B=\frac{\sqrt{x}(\sqrt{x}+1)+3(\sqrt{x}-1)}{(\sqrt{x}-1)(\sqrt{x}+1)}-\frac{6\sqrt{x}-4}{x-1}\)
\(=\frac{x+\sqrt{x}+3\sqrt{x}-3}{x-1}-\frac{6\sqrt{x}-4}{x-1}=\frac{x-2\sqrt{x}+1}{x-1}=\frac{(\sqrt{x}-1)^2}{(\sqrt{x}+1)(\sqrt{x}-1)}=\frac{\sqrt{x}-1}{\sqrt{x}+1}\)
b)
Khi \((x^2+1)(2x-8)=0\Rightarrow \left[\begin{matrix} x^2+1=0\\ 2x-8=0\end{matrix}\right.\Leftrightarrow \left[\begin{matrix} x^2=-1(\text{vô lý})\\ x=4(\text{thỏa mãn})\end{matrix}\right.\)
Với $x=4$:
\(B=\frac{\sqrt{4}-1}{\sqrt{4}+1}=\frac{1}{3}\)
1. Cho P(x)=\(\frac{x^2+\sqrt{x}}{x-\sqrt{x}+1}+\frac{x+\sqrt{x}}{\sqrt{x}}-\frac{x-1}{\sqrt{x}+1}\)với x>0
a. Rút gọn biểu thức P(x)
b. Với x>0 tìm GTLN của \(\frac{7\sqrt{x}}{P\left(x\right)}\)
2. giải hpt \(\hept{\begin{cases}3x^3y+2x^3=1\\xy^3-2x=3\end{cases}}\)
Cho biểu thức:
\(M=\left(\frac{\sqrt{x}+1}{\sqrt{2x}+1}+\frac{\sqrt{2x}+\sqrt{x}}{\sqrt{2x}+1}-\frac{\sqrt{2x}+\sqrt{x}}{\sqrt{2x}-1}\right)\)
a/ Rút gọn M
b/ Tính M khi \(x=\frac{1}{2}\left(3+2\sqrt{2}\right)\)