Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Hà Phương
Xem chi tiết
Nguyễn Thị Thanh Tâm
Xem chi tiết
Nguyễn Đức  Minh
23 tháng 5 2021 lúc 12:36

\(\frac{4+\sqrt{X}}{7}\)

Khách vãng lai đã xóa
Trx Bình
Xem chi tiết
Hoàng Tử Hà
12 tháng 6 2019 lúc 9:52

Bạn vt đề bài rõ ra nhé, mk RG trc rùi phần câu hỏi xem sau( P là j z?)

\(=\frac{\sqrt{x}\left(x\sqrt{x}-1\right)}{x+\sqrt{x}+1}-\frac{\sqrt{x}\left(2\sqrt{x}+1\right)}{\sqrt{x}}+\frac{2\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}{\sqrt{x}+1}\)

\(=\frac{\sqrt{x}\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}{x+\sqrt{x}+1}-2\sqrt{x}-1+2\sqrt{x}-2\)

\(=x-\sqrt{x}-3\)

phan gia huy
Xem chi tiết
NTP-Hoa(#cđln)
6 tháng 6 2018 lúc 16:46

K=\(\frac{\sqrt{x}+1}{\sqrt{x}+3}+\frac{\sqrt{x}-2}{\sqrt{x}-1}-\frac{2x-10}{x+2\sqrt{x}-3}ĐK:\hept{\begin{cases}x\ge0\\x\ne1\end{cases}}\)

=\(\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)+\left(\sqrt{x}+2\right)\left(\sqrt{x}+3\right)-2x+10}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}\)

=\(\frac{x-1-2x+3\sqrt{x}-2\sqrt{x}-1-6+10}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}\)

=\(\frac{\sqrt{x}+3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}=\frac{1}{\sqrt{x}-1}\)

Để K>0 thì :\(\frac{1}{\sqrt{x}-1}>0\Leftrightarrow\sqrt{x}-1>0\Leftrightarrow x>1\)

Với x>1 thoả mãn yêu cầu.

Ai Don No
Xem chi tiết
Only question
Xem chi tiết
Diệu Huyền
4 tháng 4 2020 lúc 14:18

\(a,M=\left(\frac{\sqrt{x}+1}{\sqrt{2x}+1}+\frac{\sqrt{2x}+\sqrt{x}}{\sqrt{2x}-1}-1\right):\left(1+\frac{\sqrt{x}+1}{\sqrt{2x}+1}-\frac{\sqrt{2x}+\sqrt{x}}{\sqrt{2x}-1}\right)\)

\(=\left(\frac{2x-2\sqrt{2}x+2\sqrt{2x}-1}{2x-1}-1\right):\left(1+\frac{\sqrt{x}+1}{\sqrt{2x+1}}-\frac{\sqrt{2x}+\sqrt{x}}{\sqrt{2x}-1}\right)\)

\(=\left(\frac{-2\sqrt{2}x+2\sqrt{2x}}{2x-1}\right):\left(1+\frac{x\sqrt{2}-\sqrt{x}+\sqrt{2x}-1-\left(2x+\sqrt{2x}+x\sqrt{2}+\sqrt{x}\right)}{2x-1}\right)\)

\(=\left(\frac{-2\sqrt{2}x+2\sqrt{2x}}{2x-1}\right):\left(\frac{-2\sqrt{x}-2}{2x-1}\right)\)

\(=\frac{-\sqrt{2}x+\sqrt{2x}}{\sqrt{x}-1}\)

\(=\frac{-\sqrt{2x}\left(\sqrt{x}-1\right)}{\sqrt{x}-1}\)

\(=-\sqrt{2x}\)

\(b,x=\frac{1}{2}\left(3+2\sqrt{2}\right)\)

\(x=\frac{1}{2}\left(1+2\sqrt{2}+2\right)\)

\(x=\frac{1}{2}\left(1+\sqrt{2}\right)^2\)

Thay \(x=\frac{1}{2}\left(1+\sqrt{2}\right)^2\) vào \(M=-\sqrt{2x}\) ta được:

\(M=-\sqrt{2.\frac{1}{2}\left(1+\sqrt{2}\right)^2}\)

\(M=-1-\sqrt{2}\)

Vậy ..............

Khách vãng lai đã xóa
Phương Minh
Xem chi tiết
Akai Haruma
27 tháng 8 2019 lúc 17:20

Bài 2:

ĐKXĐ: \(x\geq 0; x\neq 1\)

a)

\(B=\frac{\sqrt{x}(\sqrt{x}+1)+3(\sqrt{x}-1)}{(\sqrt{x}-1)(\sqrt{x}+1)}-\frac{6\sqrt{x}-4}{x-1}\)

\(=\frac{x+\sqrt{x}+3\sqrt{x}-3}{x-1}-\frac{6\sqrt{x}-4}{x-1}=\frac{x-2\sqrt{x}+1}{x-1}=\frac{(\sqrt{x}-1)^2}{(\sqrt{x}+1)(\sqrt{x}-1)}=\frac{\sqrt{x}-1}{\sqrt{x}+1}\)

b)

Khi \((x^2+1)(2x-8)=0\Rightarrow \left[\begin{matrix} x^2+1=0\\ 2x-8=0\end{matrix}\right.\Leftrightarrow \left[\begin{matrix} x^2=-1(\text{vô lý})\\ x=4(\text{thỏa mãn})\end{matrix}\right.\)

Với $x=4$:

\(B=\frac{\sqrt{4}-1}{\sqrt{4}+1}=\frac{1}{3}\)

Akai Haruma
30 tháng 8 2019 lúc 11:38

Bài 1:

ĐKXĐ: \(x\geq 0; x\neq 4\)

a) \(A=\frac{x}{x-4}+\frac{1}{\sqrt{x}-2}+\frac{1}{\sqrt{x}+2}=\frac{x}{x-4}+\frac{\sqrt{x}+2+\sqrt{x}-2}{(\sqrt{x}-2)(\sqrt{x}+2)}\)

\(=\frac{x}{(\sqrt{x}-2)(\sqrt{x}+2)}+\frac{2\sqrt{x}}{(\sqrt{x}+2)(\sqrt{x}-2)}=\frac{x+2\sqrt{x}}{(\sqrt{x}+2)(\sqrt{x}-2)}=\frac{\sqrt{x}(\sqrt{x}+2)}{(\sqrt{x}+2)(\sqrt{x}-2)}\)

\(=\frac{\sqrt{x}}{\sqrt{x}-2}\)

b)

Khi \(|x|=25\Rightarrow \left[\begin{matrix} x=25\\ x=-25\end{matrix}\right.\). Mà $x\geq 0$ nên $x=25$

\(P=\frac{\sqrt{x}}{\sqrt{x}-2}=\frac{\sqrt{25}}{\sqrt{25}-2}=\frac{5}{3}\)

Akai Haruma
30 tháng 8 2019 lúc 11:43

Bài 2:

ĐKXĐ: \(x\geq 0; x\neq 1\)

a)

\(B=\frac{\sqrt{x}(\sqrt{x}+1)+3(\sqrt{x}-1)}{(\sqrt{x}-1)(\sqrt{x}+1)}-\frac{6\sqrt{x}-4}{x-1}\)

\(=\frac{x+\sqrt{x}+3\sqrt{x}-3}{x-1}-\frac{6\sqrt{x}-4}{x-1}=\frac{x-2\sqrt{x}+1}{x-1}=\frac{(\sqrt{x}-1)^2}{(\sqrt{x}+1)(\sqrt{x}-1)}=\frac{\sqrt{x}-1}{\sqrt{x}+1}\)

b)

Khi \((x^2+1)(2x-8)=0\Rightarrow \left[\begin{matrix} x^2+1=0\\ 2x-8=0\end{matrix}\right.\Leftrightarrow \left[\begin{matrix} x^2=-1(\text{vô lý})\\ x=4(\text{thỏa mãn})\end{matrix}\right.\)

Với $x=4$:

\(B=\frac{\sqrt{4}-1}{\sqrt{4}+1}=\frac{1}{3}\)

Linh_Chi_chimte
Xem chi tiết
Only question
Xem chi tiết
Trần Thùy Linh
4 tháng 4 2020 lúc 12:21
https://i.imgur.com/4Pxd0Kc.jpg
Khách vãng lai đã xóa