14x(x+3)-7x^2(3+x)
(2x-5)(3+4x)-4x+10
Tìm x,biết
a) 2x ( x-5) - 2(x2-7x+3)+3=5(4x-2)
b)7x(2x-1)-5(4x+3)=14x(x-5)
1. TÌm x:
a)4x^2-2x+3-4x.(x-5)=7x-3
b)-3x.(x-5)+5.(x-1)+3x^2=4x
c)7x.(x-2)-5.(x-1)=21x^2-14x^2+3
d)3.(5x-1)-x.(x-2)+x^2-13x=7
e) 1/5x.(10x-15)-2x.(x-5)=12
a) 4x2 - 2x + 3 - 4x.(x - 5) = 7x - 3
--> 4x2 - 2x + 3 - 4x2 + 20x = 7x - 3
--> 4x2 - 2x - 4x2 + 20x - 7x = -3 - 3
--> 11x = -6
--> x = \(\frac{-6}{11}\)
b) -3x.(x - 5) + 5.(x - 1) + 3x2 = 4x
--> -3x2 + 15x + 5x - 5 + 3x2 = 4x
--> -3x2 + 15x + 5x + 3x2 - 4x = 5
--> 16x = 5
--> x = \(\frac{5}{16}\)
c) 7x.(x - 2) - 5.(x - 1) = 21x2 - 14x2 + 3
--> 7x2 - 14x - 5x + 5 = 7x2 + 3
--> 7x2 - 14x - 5x - 7x2 = -5 + 3
--> -19x = -2
--> x = \(\frac{2}{19}\)
d) 3.(5x - 1) - x.(x - 2) + x2 - 13x = 7
--> 15x - 3 - x2 + 2x + x2 - 13x = 7
--> 15x - x2 + 2x + x2 - 13x = 3 + 7
--> 4x = 10
--> x = \(\frac{5}{2}\)
e) \(\frac{1}{5}\)x.(10x - 15) - 2x.(x - 5) = 12
--> 2x2 - 3x - 2x2 + 10x = 12
--> 7x = 12
--> x = \(\frac{12}{7}\)
~ Học tốt ~
1. TÌm x:
a)4x^2-2x+3-4x.(x-5)=7x-3
b)-3x.(x-5)+5.(x-1)+3x^2=4x
c)7x.(x-2)-5.(x-1)=21x^2-14x^2+3
d)3.(5x-1)-x.(x-2)+x^2-13x=7
e) 1/5x.(10x-15)-2x.(x-5)=12
a) 4x2 - 2x + 3 - 4x(x - 5) = 7x - 3
=> 4x2 - 2x + 3 - 4x2 + 20x = 7x - 3
=> 18x + 3 = 7x - 3
=> 18x - 7x = -3 - 3
=> 11x = -6
=> x = -6/11
b) -3x(x - 5) + 5(x - 1) + 3x2 = 4x
=> -3x2 + 15x + 5x - 5 + 3x2 = 4x
=> 20x - 5 = 4x
=> 20x - 4x = 5
=> 16x = 5
=> x = 5/16
\(c,7x\left(x-2\right)-5\left(x-1\right)=21x^2-14x^2+3\)
\(\Leftrightarrow7x^2-14x-5x+5=7x^2+3\)
\(\Leftrightarrow7x^2-7x^2-19x=3-5\)
\(\Leftrightarrow-19x=-2\)
\(\Leftrightarrow x=\frac{2}{19}\)
a) 4x2 - 2x + 3 - 4x.(x - 5) = 7x - 3
<=> 18x + 3 = 7x - 3
<=> 18x = 7x - 3 - 3
<=> 18x = 7x - 6
<=> 18x - 7x = -6
<=> 11x = -6
<=> x = -6/11
=> x = -6/11
b) -3x.(x - 5) + 5.(x - 1) + 3x2 = 4x
<=> 20x - 5 = 4x
<=> 20x = 4x + 5
<=> 20x - 4x = 5
<=> 16x = 5
<=> x = 5/16
=> x = 5/16
c) 7x.(x - 2) - 5.(x - 1) = 21x2 - 14x2 + 3
<=> 7x.(x - 2) - 5.(x - 1) = 7x2 + 3
<=> 7x2 - 19x + 5 = 7x2 + 3
<=> 7x2 - 19x = 7x2 + 3 - 5
<=> 7x2 - 19x = 7x2 - 2
<=> 7x2 - 19x - 7x2 = -2
<=> -19x = -2
<=> x = 2/19
=> x = 2/19
d) 3.(5x - 1) - x.(x - 2) + x2 - 13x = 7
<=> 4x - 3 = 7
<=> 4x = 7 + 3
<=> 4x = 10
<=> x = 10/4
=> x = 5/2
e) 1/5x.(10x - 15) - 2x.(x - 5) = 12
<=> x(2x - 3) - 2x(x - 5) = 12
<=> 7x = 12
<=> x = 12/7
=> x = 12/7
A= ( 4x - 5)(2x+3) - 4(x+2)(2x - 1)+(10x+7)
B=(7x - 6y)(4x+3y) - 2(14x+y)(x - 9y) - 19(13xy - 1)
a)(6x^2+17x+12):(2x+3) b)(5x^2+13x-6):(5x-2) c)(-8x^2+22x-15):(2x-5) d)(14x^2-33x-5):(2x-5) e)(2x^3+7x^2+15x+6):(2x+1) f)(x^3+4x^2-11x-2):(x-2) g)(12x^3+2x^2+4x+3):(2x+1)
a: \(=\dfrac{6x^2+9x+8x+12}{2x+3}=\dfrac{3x\left(2x+3\right)+4\left(2x+3\right)}{2x+3}\)
=3x+4
b: \(=\dfrac{5x^2-2x+15x-6}{5x-2}\)
\(=\dfrac{x\left(5x-2\right)+3\left(5x-2\right)}{5x-2}=x+3\)
c: \(=\dfrac{-8x^2+20x+2x-5-10}{2x-5}=-4x+1+\dfrac{-10}{2x-5}\)
d: \(=\dfrac{14x^2-35x+2x-5}{2x-5}=\dfrac{7x\left(2x-5\right)+\left(2x-5\right)}{2x-5}\)
=7x+1
e: \(=\dfrac{2x^3+x^2+6x^2+3x+12x+6}{2x+1}\)
\(=\dfrac{x^2\left(2x+1\right)+3x\left(2x+1\right)+6\left(2x+1\right)}{2x+1}=x^2+3x+6\)
f: \(=\dfrac{x^3-2x^2+6x^2-12x+x-2}{x-2}=x^2+6x+1\)
g: \(=\dfrac{12x^3+6x^2-4x^2-2x+6x+3}{2x+1}=6x^2-2x+3\)
Tim X;
a/ 6x.(4x-3) - 8x.(5-3x)=43
b/(1-7x).(4x-3)-(14x-9).(5-2x)=30
c/(x+1).(x+2).(x+5) - x2.(x+8)=27
giải phương trình:
a)(2x-3)(2x+3)=4x(x-5)-3x
b)(2x+1)(4x-3)=4x^2-1
c)3x/x-2+x/5-x-2x^2+5/x^2-7x+10=0
\(a)PT\Leftrightarrow4x^2-9-4x^2+20x+3x=0.\\ \Leftrightarrow23x=9.\\ \Leftrightarrow x=\dfrac{9}{23}.\\ b)PT\Leftrightarrow\left(2x+1\right)\left(4x-3\right)-\left(2x+1\right)\left(2x-1\right)=0.\\\Leftrightarrow\left(2x+1\right)\left(4x-3-2x+1\right)=0.\\ \Leftrightarrow\left(2x+1\right)\left(2x-2\right)=0.\\ \Leftrightarrow\left(2x+1\right)\left(x-1\right)=0. \)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{-1}{2}.\\x=1.\end{matrix}\right.\)
Dùng phương pháp hệ số bất định
a) 4x^4+4x^3+5x^2+2x+1
b) x^4-7x^3+14x^2-7x+1
tim x: a.4/(x^2+2x+1)+3/(x^2+2x+3)=3/2
b.4x/(x^2+4x+5)+7x/(x^2-4x+5)=39/10
a) Đặt x^2+2x+2=t
\(\frac{4}{t-1}+\frac{3}{t+1}=\frac{3}{2}\Leftrightarrow\frac{4t+4+3t-3}{t^2-1}=\frac{7t+1}{t^2-1}=\frac{3}{2}\)
\(\Leftrightarrow14t+2=3t^2-3\Leftrightarrow3t^2-14t-5=3t\left(t-5\right)+t-5=0\)\(\Leftrightarrow\left(t-5\right)\left(3t+1\right)=0\Rightarrow\left[\begin{matrix}t=5\\t=-\frac{1}{3}\left(loai\right)\end{matrix}\right.\)
Với t=5 ta có (x+1)^2=4\(\Rightarrow\left[\begin{matrix}x+1=2\\x+1=-2\end{matrix}\right.\Rightarrow\left\{\begin{matrix}x=1\\x=-3\end{matrix}\right.\)