Những câu hỏi liên quan
Big City Boy
Xem chi tiết
Trần Minh Hoàng
9 tháng 3 2021 lúc 22:45

a) Theo hệ quả của định lý Thales ta có:

\(\dfrac{DN}{AB}=\dfrac{AF}{FD};\dfrac{CM}{AB}=\dfrac{CE}{EB}\Rightarrow\dfrac{DN}{AB}.\dfrac{CM}{AB}=\dfrac{AF}{FD}.\dfrac{CE}{EB}=1\Rightarrow DN.CM=a^2\).

b) Do \(CM.DN=a^2=AD.BC\Rightarrow\dfrac{CM}{BC}=\dfrac{AD}{DN}\).

Mà \(\widehat{MCB}=\widehat{ADN}=90^o\Rightarrow\Delta NDA\sim\Delta BCM\left(c.g.c\right)\Rightarrow\widehat{AND}=\widehat{MBC}\Rightarrow\widehat{AND}+\widehat{MCB}=\widehat{MBC}+\widehat{MCB}=90^o\Rightarrow\widehat{MKN}=90^o\).

c) Áp dụng bất đẳng thức AM - GM:

\(DN+CM\ge2\sqrt{DN.CM}=2a\).

Do đó \(MN=DN+DC+CM\ge2a+a=3a\).

Đẳng thức xảy ra khi và chỉ khi DN = CM \(\Leftrightarrow DN=CM=a\)

\(\Leftrightarrow\) E, F lần lượt là trung điểm của BC, DA.

đỗ thanh hà
Xem chi tiết
An Nguyễn Thy Mỹ
Xem chi tiết
Nguyễn Thy Mỹ An
Xem chi tiết
Akai Haruma
30 tháng 9 2020 lúc 17:10

Bạn tham khảo lời giải tại đây:

Câu hỏi của Uchiha Itachi - Toán lớp 8 | Học trực tuyến

Khách vãng lai đã xóa
Hoa Thiên Cốt
Xem chi tiết
0o0^^^Nhi^^^0o0
Xem chi tiết
Nguyễn Lâm Ngọc
Xem chi tiết
Nguyễn Lâm Ngọc
28 tháng 7 2017 lúc 18:19

(((Làm theo hướng đó đúng rồi.. Tiếp nà )))

HFCE là hình bình hành (tự c/m)

=> \(\hept{\begin{cases}HF\text{//}EC\\HF=EC\left(1\right)\end{cases}}\)

Mà EC//AK => HF//AK

 => Δ ANK =  Δ FNH (g.c.g)

=> AK=HF (2)

Từ (1) và (2) suy ra AK=EC. Mà AK//EC

=> Tứ giác AKCE là hình bình hành có O là trung điểm của AC

=> O cũng là trung điểm của EK

=> Đpcm...

Thiên Thần ( Fire Smoke...
6 tháng 4 2020 lúc 22:57

undefined

Ta thấy : 4 điểm A ; F ; C ; E cùng thuộc đường tròn đường kính AC .

Vì trung trực của EF cắt AC tại O nên O là trung điểm AC .

Ta có : OM , AH cùng vuông góc với EF nên OM // AH 

=> M là trung điểm CH ( Vì O là trung điểm của AC )

Do đó , tứ giác CFHE có tâm đối xứng M hay CFHE là hình bình hành .

Suy ra : HF // CE // AK 

Dễ chứng minh △HNF = △KNA ( g.c.g )

Suy ra : Tứ giác AHFK là hình bình hành .

Vậy : AK = HF = CE , kết hợp với AK // CE , AK vuông góc với AE .

Suy ra : CKAE là hình chữ nhật .

Vì O là trung điểm đường chéo AC nên O là tâm của hình chữ nhật CKAE hay K , O , E thẳng hàng ( đpcm )

Khách vãng lai đã xóa
Lê Minh Đức
Xem chi tiết
Lê Minh Đức
27 tháng 7 2017 lúc 10:51

Thử nhé: Gọi O' là trung điểm của AC.

Tam giác vuông AEC và AFC có trung tuyến lần lượt là EO' và FO' nên O'E=O'F (=1/2AC).

Suy ra: O'EF là tam giác cân. Mà O'M là đường trung tuyến của tam giác O'EF.

nên O'M là đường trung trực của EF. 

Vậy O và O' đều là giao điểm của đường trung trực của EF với AC nên O trùng O'. Suy ra O là trung điểm của AC.

Xét tam giác ACH có OA=OC và OM song song AH nên CM=HM. 

Xét tứ giác CEHF có 2 đường chéo cắt nhau tại trung điểm mỗi đường nên là hbh. Đến đay làm sao?

Nguyễn Lâm Ngọc
27 tháng 7 2017 lúc 16:40

Dù sao cũng cảm ơn nhiều !~

Nguyễn Tất Đạt
27 tháng 9 2019 lúc 21:57

A B C D E F N M O H K

Dễ thấy bốn điểm A,F,C,E cùng thuộc đường tròn đường kính AC

Vì trung trực của EF cắt AC tại O nên O là trung điểm AC

Ta có OM và AH cùng vuông góc với EF nên OM // AH suy ra M là trung điểm CH (Vì O là trung điểm AC)

Do đó tứ giác CFHE có tâm đối xứng M hay CFHE là hình bình hành

Suy ra HF // CE // AK. Dễ chứng minh \(\Delta\)HNF = \(\Delta\)KNA (g.c.g), suy ra tứ giác AHFK là hình bình hành

Vậy AK = HF = CE, kết hợp với AK // CE, AK vuông góc AE suy ra CKAE là hình chữ nhật

Vì O là trung điểm đường chéo AC nên O là tâm của hình chữ nhật CKAE hay K,O,E thẳng hàng (đpcm).

Hoàng Anh Khuất Bá
Xem chi tiết