Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Đặng Hiệp
Xem chi tiết
Nhật Hạ
26 tháng 4 2020 lúc 10:05

Vì AD là phân giác BAC => DAC = DAB = BAC : 2 hay 2DAC = 2DAB = BAC

Vì CE là phân giác BCA => BCE = ECA = BCA : 2 hay 2BCE = 2ECA = BCA

Xét △ABC vuông tại B có: BAC + BCA = 90o (2 góc nhọn trong △ vuông)

=> 2DAC + 2ECA = 90o  => DAC + ECA = 45o

Xét △ICA có: ICA + IAC + CIA = 180o (tổng 3 góc trong tam giác)

=> 45o + CIA = 180o  => CIA = 135o

b, Xét △ABC có BCx là góc ngoài của △ tại đỉnh C, ta có: BCx = CBA + BAC => BCx = 90o + BAC

Vì CK là phân giác BCx \(\Rightarrow\frac{\widehat{BCx}}{2}=\frac{90^o+\widehat{BAC}}{2}\)\(\Rightarrow\widehat{BCK}=45^o+\widehat{DAC}\)

Xét △KCA có: CKA + KCA + CAK = 180o (tổng 3 góc trong △)

=> CKA + KCD + DCI + ICA + CAK = 180o

=> CKA + 45o + DAC + DCI + ICA + CAK = 180o

=> CKA + (DAC + ICA) + (DCI + CAK) = 135o

=> CKA + 45o + 45o = 135o

=> CKA = 45o

Khách vãng lai đã xóa
kim taehyung
Xem chi tiết
Nguyễn Lê Phước Thịnh
21 tháng 10 2023 lúc 20:50

a: ΔBAC vuông tại B

=>\(\widehat{BAC}+\widehat{BCA}=90^0\)

=>\(2\left(\widehat{IAC}+\widehat{ICA}\right)=90^0\)

=>\(\widehat{IAC}+\widehat{ICA}=45^0\)

Xét ΔIAC có \(\widehat{IAC}+\widehat{ICA}+\widehat{CIA}=180^0\)

=>\(\widehat{CIA}=180^0-45^0=135^0\)

b: CI và CK là hai tia phân giác của hai góc kề bù

=>\(\widehat{ICK}=90^0\)

\(\widehat{CIK}+\widehat{CIA}=180^0\)

=>\(\widehat{CIK}=45^0\)

Xét ΔCKI vuông tại C có \(\widehat{CIK}=45^0\)

nên ΔCKI vuông cân tại C

=>\(\widehat{CKI}=\widehat{CKA}=45^0\)

Simmer Williams
Xem chi tiết
Quỳnh Quỳnh Giao
Xem chi tiết
HUYNH NHAT TUONG VY
Xem chi tiết
Hoàng Thị Ngọc Anh
6 tháng 11 2017 lúc 21:38

Xem lại đề.

HUYNH NHAT TUONG VY
29 tháng 12 2017 lúc 18:57

ok ,mình nhầm

pham thi thuy trang
Xem chi tiết
Nguyễn Trọng Nghĩa
Xem chi tiết
Nguyễn Thanh Thiên
Xem chi tiết
Fran
Xem chi tiết
Nguyễn Lê Phước Thịnh
1 tháng 9 2021 lúc 14:56

a: Xét ΔABD vuông tại B và ΔAED vuông tại E có 

AD chung

\(\widehat{BAD}=\widehat{EAD}\)

Do đó: ΔABD=ΔAED

Suy ra: AB=AE và DB=DE

b: Xét ΔDBK vuông tại B và ΔDEC vuông tại E có 

DB=DE

BK=EC

Do đó: ΔDBK=ΔDEC

Suy ra: DK=DC

Ta có: AB+BK=AK

AE+EC=AC

mà AB=AE

và BK=EC

nên AK=AC

Ta có: AK=AC

nên A nằm trên đường trung trực của KC(1)

Ta có: DK=DC

nên D nằm trên đường trung trực của KC(2)

Ta có: IK=IC

nên I nằm trên đường trung trực của KC(3)

Từ (1), (2) và (3) suy ra A,D,I thẳng hàng