Cho ∆ABC vuông tại B. Vẽ phân giác AD của ∆ABC (D BC) .Vẽ DE AC (E AC).
a) Chứng minh: AB = AE.
b) Trên tia đối của tia BA lấy điểm K sao cho BK = CE. Tia AD cắt CK tại I. Chứng minh: I là trung điểm của CK.
c) Chứng minh: K, D, E thẳng hàng.
d) Chứng minh: AB + BC > DE + AC.
Vẽ hình giúp mình ạ. Mình xin cảm ơn trước
a: Xét ΔABD vuông tại B và ΔAED vuông tại E có
AD chung
\(\widehat{BAD}=\widehat{EAD}\)
Do đó: ΔABD=ΔAED
Suy ra: AB=AE và DB=DE
b: Xét ΔDBK vuông tại B và ΔDEC vuông tại E có
DB=DE
BK=EC
Do đó: ΔDBK=ΔDEC
Suy ra: DK=DC
Ta có: AB+BK=AK
AE+EC=AC
mà AB=AE
và BK=EC
nên AK=AC
Ta có: AK=AC
nên A nằm trên đường trung trực của KC(1)
Ta có: DK=DC
nên D nằm trên đường trung trực của KC(2)
Ta có: IK=IC
nên I nằm trên đường trung trực của KC(3)
Từ (1), (2) và (3) suy ra A,D,I thẳng hàng