Tìm số nguyên x và y sao cho 5/x-y/3=1/6
1. Tìm các số tự nhiên x và y sao cho:
a) x/3 - 4/y = 1/5
b) 4/x + y/3 = 5/6 .
2Tìm các số nguyên x và y sao cho:
a) 5/x - y/3 = 1/6
b) x/6 - 2/y = 1/30
2:
a: 5/x-y/3=1/6
=>\(\dfrac{15-xy}{3x}=\dfrac{1}{6}\)
=>\(\dfrac{30-2xy}{6x}=\dfrac{x}{6x}\)
=>30-2xy=x
=>x(2y+1)=30
=>(x;2y+1) thuộc {(30;1); (-30;-1); (10;3); (-10;-3); (6;5); (-6;-5)}
=>(x,y) thuộc {(30;0); (-30;-1); (10;1); (-10;-2); (6;2); (-6;-3)}
b: x/6-2/y=1/30
=>\(\dfrac{xy-12}{6y}=\dfrac{1}{30}\)
=>\(\dfrac{5xy-60}{30y}=\dfrac{y}{30y}\)
=>5xy-60=y
=>y(5x-1)=60
=>(5x-1;y) thuộc {(-1;-60); (4;15); (-6;-10)}(Vì x,y là số nguyên)
=>(x,y) thuộc {(0;-60); (1;15); (-1;-10)}
tìm các số nguyên x và y sao cho 5/x-y/3=1/6
Tìm các cặp số nguyên x và y sao cho 5/x-y/3=1/6
Tìm số nguyên x và y sao cho 5/x-y/3=1/6
Tìm các số nguyên x và y sao cho : 5/x - y/3 = 1/6 trình bày rõ ràng nhé
\(\frac{5}{x}-\frac{y}{3}=\frac{1}{6}\)
<=> \(\frac{30}{6x}-\frac{2xy}{6x}=\frac{x}{6x}\)
<=> 30-2xy=x
<=>x+2xy=-30
<=>x(2y+1)=-30
Vì x,y thuộc Z
=> x,2y+1 thuộc Z
=> x, 2y+1 thuộc Ư(-30)={1;-1;2;-2;3;-3;5;-5;6;-6;10;-10;15;-15;30;-30}
Xét bảng ( tự xét nha)
KL: ...........
Tìm số nguyên x và y sao cho:
a) (x+3) . (y+2) =1
b) (2x-5) . (y-6) =17
a) (x+3) . (y+2) =1
<=> (x+3) và (y+2) \(\in\) Ư(1)
=> Ư(1) = {-1;1}
+ Nếu: - x + 3 = 1 <=> x = -2
- y + 2 = 1 <=> x = -1
+Nếu: - x + 3 = -1 <=> x = -4
- y + 2 = -1 <=> x = -3
a) (x+3) . ( y+2) = 1
=> (x+3) thuộc Ư(1)
=> ( x+3) thuộc {-1;1}
+) x+3 = -1
=> x = -1-3 = -4
=> y+2 = 1 / -1 = -1 => y = -1-2 = -3
+) x+3 =1
=> x = 1-3 = -2
=> y+2 = 1/1 = 1
=> y = 1-2 = -1
Vậy ta có những cặp (x;y) cần tìm là: (-4;-3) và (-2;-1).
b) (2x-5) . ( y-6) = 17
=> (2x-5) thuộc Ư(17)
=> (2x-5) thuộc {-1;1;-17;17}
Ta có bảng sau:
2x-5 -1 1 -17 17
x 2 3 -6 11
y-6 -17 17 -1 1
y -11 23 5 7
(t/m) (t/m) (t/m) (t/m)
Vậy ta có ccs cặp (x;y) cần tìm là :(2;-11) ; (3;23) ; (-6;5) ; (11;7)
1- Tính :
A= 5. | x- 5 | - 3x + 1
2 - Tìm các số nguyên x,y ; sao cho :
a) 5/x - y/3 = 1/6 b) 5/x + y/4 = 1/8
3- Tìm giá trị lớn nhất của Q = 27-2x/12-x ( x là số nguyên)
---------------------------------------------------------------------------------------------
Giup mình với ah.
1- Tính :
A= 5. | x- 5 | - 3x + 1
2 - Tìm các số nguyên x,y ; sao cho :
a) 5/x - y/3 = 1/6 b) 5/x + y/4 = 1/8
3- Tìm giá trị lớn nhất của Q = 27-2x/12-x ( x là số nguyên)
---------------------------------------------------------------------------------------------
Tìm số nguyên n để (6n - 1 ) chia hết cho (3n+2)
Tìm số nguyên x,y sao cho 5/x - y/3 = 1/6
1) Ta có: 6n-1=2(3n+2)-5
Để 6n-1 chia hết cho 3n+2 thì 2(3n+2)-5 phải chia hết cho 3n+2
=> -5 phải chia hết cho 3n+2 vì 2(3n+2) chia hết cho 3n+2
Vì \(n\inℤ\Rightarrow3n+2\inℤ\Rightarrow3n+2\inƯ\left(-5\right)=\left\{-5;-1;1;5\right\}\)
Ta có bảng giá trị
3n+2 | -5 | -1 | 1 | 5 |
3n | -7 | -3 | -1 | 3 |
n | \(\frac{-7}{3}\) | -1 | \(\frac{-1}{3}\) | 1 |
Đối chiếu điều kiện \(x\inℤ\)
Vậy n=\(\pm1\)
\(\frac{5}{x}-\frac{y}{3}=\frac{1}{6}\)
\(\Rightarrow\frac{1}{6}+\frac{y}{3}=\frac{5}{x}\)
\(\Rightarrow\frac{1}{6}+\frac{2y}{6}=\frac{5}{x}\)
\(\Rightarrow x\left(1+2y\right)=30\)
\(\Rightarrow x;1+2y\inƯ\left(30\right)=\left\{\pm1;\pm3;\pm5;\pm6;\pm10\pm30\right\}\)
Vì 2y là số chẵn => 1+2y là số lẻ
=> 1+2y là ước lẻ của 30
Ta có bảng:
x | -5 | -3 | -1 | 1 | 3 | 5 |
1+2y | -6 | -10 | -30 | 30 | 10 | 6 |
2y | -5 | -9 | -29 | 29 | 9 | 5 |
y | \(\frac{-5}{2}\) | \(\frac{-9}{2}\) | \(\frac{-29}{2}\) | \(\frac{29}{2}\) | \(\frac{9}{2}\) | \(\frac{5}{2}\) |
=> x;y \(\in\varnothing\)
Giup mình với ah.
1- Tính :
A= 5. | x- 5 | - 3x + 1
2 - Tìm các số nguyên x,y ; sao cho :
a) 5/x - y/3 = 1/6 b) 5/x + y/4 = 1/8
3- Tìm giá trị lớn nhất của Q = 27-2x/12-x ( x là số nguyên)
---------------------------------------------------------------------------------------------
1) \(A=5.\left|x-5\right|-3x+1\)
\(A=\left[{}\begin{matrix}5.\left(x-5\right)-3x+1\left(x-5\ge0\right)\\5.\left(5-x\right)-3x+1\left(x-5< 0\right)\end{matrix}\right.\)
\(A=\left[{}\begin{matrix}5x-25-3x+1\left(x\ge5\right)\\25-5x-3x+1\left(x< 5\right)\end{matrix}\right.\)
\(A=\left[{}\begin{matrix}2x-24\left(x\ge5\right)\\26-8x\left(x< 5\right)\end{matrix}\right.\)
3:
\(Q=\dfrac{27-2x}{12-x}=\dfrac{2x-27}{x-12}\)
\(\Leftrightarrow Q=\dfrac{2x-24-3}{x-12}=2-\dfrac{3}{x-12}\)
Để Q lớn nhất thì \(2-\dfrac{3}{x-12}\) lớn nhất
=>\(\dfrac{3}{x-12}\) nhỏ nhất
=>x-12 là số nguyên âm lớn nhất
=>x-12=-1
=>x=11
Vậy: \(Q_{min}=2-\dfrac{3}{11-12}=2+3=5\) khi x=11
Bài 2:
a: \(\dfrac{5}{x}-\dfrac{y}{3}=\dfrac{1}{6}\)
=>\(\dfrac{15-xy}{3x}=\dfrac{1}{6}\)
=>\(15-xy=\dfrac{x}{2}\)
=>\(30-2xy=x\)
=>x+2xy=30
=>x(2y+1)=30
mà x,y nguyên
nên \(\left(x;2y+1\right)\in\left\{\left(30;1\right);\left(-30;-1\right);\left(2;15\right);\left(-2;-15\right);\left(10;3\right);\left(-10;-3\right)\right\}\)
=>\(\left(x,y\right)\in\left\{\left(30;0\right);\left(-30;-1\right);\left(2;7\right);\left(-2;-8\right);\left(10;1\right);\left(-10;-2\right)\right\}\)
b: \(\dfrac{5}{x}+\dfrac{y}{4}=\dfrac{1}{8}\)
=>\(\dfrac{20+xy}{4x}=\dfrac{1}{8}\)
=>\(\dfrac{40+2xy}{8x}=\dfrac{x}{8x}\)
=>40+2xy=x
=>x-2xy=40
=>x(1-2y)=40
mà x,y nguyên
nên \(\left(x;1-2y\right)\in\left\{\left(40;1\right);\left(-40;-1\right);\left(8;5\right);\left(-8;-5\right)\right\}\)
=>\(\left(x,y\right)\in\left\{\left(40;0\right);\left(-40;1\right);\left(8;-2\right);\left(-8;3\right)\right\}\)