Cho tam giác ABC vuông tại A có ABC=50. Trên cạnh AB lấy điểm E , trên cạnh AC lấy điểm D sao cho EDA=20 và DE=DC. CM: BD=2AD?
Cho tam giác ABC vuông tại A có ABC=50. Trên cạnh AB lấy điểm E , trên cạnh AC lấy điểm D sao cho EDA=20 và DE=DC.
CM: BD=2AD?
CÁC BẠN ƠI MÌNH CẦN GẤP! GIÚP MÌNH VỚI!
Cho tam giác ABC vuông tại A có ^B=50. Trên cạnh AB lấy E, AC lấy D sao cho ^EDA=20 và DE=DC. Chứng minh rằng BD=2AD
Tam giác ABC vuông tại A, AB<AC. Trên cạnh AC lấy điểm D sao cho AB=AD. Trên tia đối tia AB lấy điểm E sao cho AE=AC.
a) Cm: Tam giác ABC = Tam giác ADE
b) Cm: ED⊥BC
c) Gọi H là giao điểm tia BD và ED. Cm: HB=HE
a: Xét ΔABC vuông tại A và ΔADE vuông tại A có
AB=AD
AC=AE
=>ΔABC=ΔADE
b: góc DEB+góc CBA=45+45=90 độ
=>DE vuông góc BC tại H
c: Sửa đề: H là giao của DE với BC
Xét ΔHEB vuông tại H có góc HEB=45 độ
nên ΔHEB vuông cân tại H
=>HE=HB
Tam giác ABC vuông tại A, AB<AC. Trên cạnh AC lấy điểm D sao cho AB=AD. Trên tia đối tia AB lấy điểm E sao cho AE=AC.
a) Cm: Tam giác ABC = Tam giác ADE
b) Cm: ED⊥BC
c) Gọi H là giao điểm tia BD và ED. Cm: HB=HE
cho tam giác ABC có góc A vuông, AB = 10 cm và AC = 15 cm. Lấy M làm trung điểm của cạnh BC. Trên cạnh AC lấy điểm D sao cho DC = 1/3 AC. Nối B với D, A với M; BD và AM cắt nhau tại I
a. tính diện tích tam giác ABC
b. tính diện tích tứ giác IMCD
Tự luận: Cho tam giác ABC vuông tại A. Kẻ AH ⊥ BC . Trên cạnh huyền BC lấy điểm D sao cho BD = AB. Trên cạnh AC lấy điểm E sao cho AE = AH. Chứng minh rằng DE ⊥ AC ⇒ BC + AH > AC + AB .
Cho tam giác ABC có AB=12,AC=16,BC=20 .
a) Chứng minh tam giác ABC là tam giác vuông;
b) Trên cạnh AB lấy điểm D sao cho BD = 4 .Từ D kẻ DE//BC (E∈AC).
Tính DE,EC.
c) Tìm vị trí điểm D trên cạnh AB sao cho BD+EC=DE.
Cho tam giác ABC vuông tại A có phân giác BD ( D thuộc AC). Trên cạnh BC lấy điểm E sao cho AE = BE. Trên tia đối của tia AB lấy điểm F sao cho AF = EC. Gọi I là giao điểm của BD và FC. Chứng minh rằng:
a) Tam giác ABD = Tam giác EBD
b) DE vuông góc với BC
c) BD là trung trực của đoạn thẳng AE
d) Ba điểm D , E , F thẳng hàng
e) Điểm D cách đều ba cạnh của tam giác AEI
a: Xét ΔBAD và ΔBED có
BA=BE
góc ABD=góc EBD
BD chung
=>ΔBAD=ΔBED
b: ΔBAD=ΔBED
=>góc BED=90 độ
=>DE vuông góc CB
c: BA=BE
DA=DE
=>BD là trung trực của AE
d: Xét ΔDAF vuông tại A và ΔDEC vuông tại E có
DA=DE
AF=EC
=>ΔDAF=ΔDEC
=>góc ADF=góc EDC
=>góc ADF+góc ADE=180 độ
=>F,D,E thẳng hàng
a) Ta có: \(BC^2=13^2=169\)
\(AB^2+AC^2=5^2+12^2=169\)
Do đó: \(BC^2=AB^2+AC^2\)(=169)
Xét ΔABC có \(BC^2=AB^2+AC^2\)(cmt)
nên ΔABC vuông tại A(Định lí Pytago đảo)