Cho nửa đường tròn tâm (O ;R), đường kính AB. V ẽ d ây MN = R (điểm M ở trên cung AN) Hai dây AN và BM cắt nhau tại I. Hỏi khi dây MN di động thì điểm I di động tr ên đường nào?
Cho nửa đường tròn đường kính AB, tâm O. Đường tròn tâm A bán kính AO cắt nửa đường tròn đã cho tại C. Đường tròn tâm B bán kính BO cắt nửa đường tròn đã cho tại D. Đường thẳng qua O và song song với AD cắt nửa đường tròn đã cho tại E. So sánh hai cung BE và CD.
Cho nửa đường tròn đường kính AB, tâm O. Đường tròn tâm A bán kính AO cắt nửa đường tròn đã cho tại C. Đường tròn tâm B bán kính BO cắt nửa đường tròn đã cho tại D. Đường thẳng qua O và song song với AD cắt nửa đường tròn đã cho tại E. Chứng minh CD song song với AB.
∆ ACB nội tiếp trong đường tròn (O) có AB là đường kính nên ∆ ABC vuông tại C
CO = OA = (1/2)AB (tính chất tam giác vuông)
AC = AO (bán kính đường tròn (A))
Suy ra: AC = AO = OC
∆ ACO đều góc AOC = 60 °
∆ ADB nội tiếp trong đường tròn đường kính AB nên ∆ ADB vuông tại D
DO = OB = OA = (1/2)AB (tính chất tam giác vuông)
BD = BO(bán kính đường tròn (B))
Suy ra: BO = OD = BD
∆ BOD đều
Cho nửa đường tròn đường kính AB, tâm O. Đường tròn tâm A bán kính AO cắt nửa đường tròn đã cho tại C. Đường tròn tâm B bán kính BO cắt nửa đường tròn đã cho tại D. Đường thẳng qua O và song song với AD cắt nửa đường tròn đã cho tại E. Tính số đo của góc DAO.
Cho nửa đường tròn đường kính AB, tâm O. Đường tròn tâm A bán kính AO cắt nửa đường tròn đã cho tại C. Đường tròn tâm B bán kính BO cắt nửa đường tròn đã cho tại D. Đường thẳng qua O và song song với AD cắt nửa đường tròn đã cho tại E. Chứng minh AD vuông góc với OC
Mà AD, CO là hai đường chéo của hình thoi AODC nên AD vuông góc với OC
Cho nửa đường tròn đường kính AB, tâm O. Đường tròn tâm A bán kính AO cắt nửa đường tròn đã cho tại C. Đường tròn tâm B bán kính BO cắt nửa đường tròn đã cho tại D. Đường thẳng qua O và song song với AD cắt nửa đường tròn đã cho tại E. Góc ADC và góc ABC có bằng nhau không? Vì sao?
Trong đường tròn (O) ta có:
góc ADC = góc ABC (2 góc nội tiếp cùng chắn cung AC
cho nửa đường tròn tâm O đường kính BC.Điểm A thuộc nửa đường tròn tâm O khác B và C.Kẻ AH vuông góc BC (H \(\in\)BC). Trên nửa mặt phẳng bờ BC chứa A vẽ nửa đường tròn tâm I đường kính BH và nửa đường tròn tâm K đường kính CH , chúng lần lượt cắt AB , AC ở D và E.
a,Chứng minh: tứ giác BCED nội tiếp
b,Gọi M,N lần lượt là các điểm đối xứng H qua AB và AC.Chứng minh MN là tiếp tuyến của nửa đường tròn tâm O
c,Biết BC=50 cm , DE=20 cm .Tính diện tích hình được giới hạn bởi 3 nửa đường tròn tâm O,I,K
Cho nửa đường tròn tâm O, đường kính AB. Lấy OA làm đường kính, vẽ nửa đường tròn nằm trên nửa mặt phẳng bờ AB chứa nửa đường tròn tâm O. Trên nửa đường tròn đường kính OA lấy điểm C không trùng với A và O, tia OC cắt nửa đường tròn tâm O tại D. Vẽ DH vuông góc với AB. CHứng minh AHCD là hình thang cân
Cho nửa đường tròn (O) đường kính AB . Lấy M là điểm tùy ý (H\(\varepsilon\)AB) . Trên cùng nửa mawtjj phẳng bờ AB chứa nửa đường tròn (O) vẽ hai đường tròn tâm O\(_1\), đường kính AH và tâm O\(_2\),đường kính BH , MA và MB cắt hai nửa đường tròn (O\(_1\))và (O\(_2\)) lần lượt tại P và Q. Chứng minh:
a) MH=PQ
b) Các tam giác MPQ và tam giác MBA đồng dạng;
c) PQ là tiếp tuyến chung của hai đường tròn (O\(_1\)) và (O\(_2\)).
Cho nửa đường tròn tâm O đường kính AB.trong cùng nửa mặt phẳng bờ AB với nửa đường tròn (O),vẽ nửa đường tròn tâm O' , đường kính OA.trên OB lấy điểm H sao cho OH=1/3 OB,đường vuông góc với AB tại H cắt nửa đường tròn tâm O tại C,AC cắt nửa đường tròn tâm O' tại điểm thứ 2 là D
a) CM: DA=DC
b) CM rằng tiếp tuyến tại D của (O') và tiếp tuyến tại C của (O) song song vs nhau
c) CM tiep tuyen tại D của (O') đi qua B
Cho nửa đường tròn tâm O đường kính AB. Lấy AO là đường kính vẽ nửa đường tròn tâm O' cùng phía với nửa đg tròn tâm O. một cái tuyến bất kì qua A giao nửa đường tròn tâm O' và O tại C và D. CMR C là trung điểm AD và tiếp tuyến tại C // với tiếp tuyến tại D.
b*) Nêu cách xác định điểm C sao cho BC là tiếp tuyến (O')
a: góc ACO=1/2*sđ cung AO=90 độ
=>OC//BD
Xét ΔADB có
O là trung điểm của AB
OC//BD
=>C là trung điểm của AD
b: BC là tiếp tuyến của (O')
=>góc BCO'=90 độ
=>góc O'CA=góc OCB
=>góc CO'O=góc O'CO=góc O'OC
=>ΔOO'C đều
=>C thuộc (O') sao cho ΔOCO' đều
=>Dựng đường trung trực của OO' cắt (O') tại C, ta đc điểm C cần tìm