Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
fuck you

Những câu hỏi liên quan
Chung Nguyễn thị
Xem chi tiết
Pham Thanh Tam
Xem chi tiết
Trương Thị Khánh Linh
15 tháng 4 2020 lúc 8:14

   R(x) =           2x2 + 3x - 1

-  M(x) =   -x3 + x2 

                x3 + x2 + 3x - 1

Vậy R(x) - M(x) = x3 + x+ 3x - 1

Khách vãng lai đã xóa
Dang Dao Chau Giang
Xem chi tiết
Nguyễn Đức Trí
3 tháng 8 2023 lúc 12:52

\(B=\left(x-3\right)^3-\left(x+3\right)\left(x^2-3x+9\right)+\left(3x-1\right)\left(3x+1\right)\)

\(B=x^3-9x^2+27x-27-\left(x^3-3x^2+9x+3x^2-9x+27\right)+\left(9x^2-1\right)\)

\(B=x^3-9x^2+27x-27-\left(x^3+27\right)+9x^2-1\)

\(B=x^3-9x^2+27x-27-x^3-27+9x^2-1\)

\(B=27x-55\)

Dang Dao Chau Giang
3 tháng 8 2023 lúc 13:23

giải cho tui cả phần c nx đi

 

Lê Thanh Dương
Xem chi tiết
KAl(SO4)2·12H2O
26 tháng 3 2020 lúc 16:39

a) (3x + 1)^2 - 2(3x + 1)(3x - 5) + (3x - 5)^2 

= 9x^2 + 6x + 1 - 18x^2 + 24x + 10 + 9x^2 - 30x + 25

= 36

b) (3x^2 - y)^2

= 9x^4 - 6x^2y + y^2

c) (3x + 5)^2 + (3x - 5)^2 - (3x + 2)(3x - 2)

= 9x^2 + 30x + 25 + 9x^2 - 30x + 25 - 9x^2 + 4

= 9x^2 + 54

d) 2x(2x - 1)^2 - 3x(x + 3)(x - 3) - 4x(x + 1)^2

= 8x^3 - 8x^2 + 2x - 3x^2 + 27x - 4x^3 - 8x^2 - 4x

= x^3 - 16x^2 + 25x

e) (x - 2)(x^2 + 2x + 4) - (x + 1)^2 + 3(x - 1)(x + 1)

= x^3 - 8 - x^2 - 2x - 1 + 3x^2 - 2

= x^3 + 2x^2 - 2x - 12

f) (x^4 - 5x^2 + 25)(x^2 + 5) - (2 + x^2)^2 + 3(1 + x^2)^2

= x^6 + 125 - 4 - 4x^2 - x^2 + 3 + 6x^2 + 3x^4

= x^6 + 2x^4 + 2x^2 + 124

Khách vãng lai đã xóa
võ sơn thành
Xem chi tiết
☆Châuuu~~~(๑╹ω╹๑ )☆
24 tháng 11 2021 lúc 13:43

D  nhá!!

lê thanh tình
24 tháng 11 2021 lúc 13:43

(-3*x-1)*y+3*x^2+x

Mai Hương Lê Thị
24 tháng 11 2021 lúc 13:44

D.(x - y)(3x + 1)

đoàn bảo trâm
Xem chi tiết
đoàn bảo trâm
1 tháng 12 2021 lúc 19:43

dấu [] là giá trị tuyệt đối nha

 

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
23 tháng 9 2019 lúc 3:33

michelle holder
Xem chi tiết
Lightning Farron
16 tháng 6 2017 lúc 18:58

\(x^{11}+3x^{10}+x^9+3x^8+x^7-3x^6-17x^5+3x^4+x^3+3x^2+x+3=0\)

\(\Leftrightarrow\left(x^{11}+2x^{10}+4x^9+6x^8+9x^7+6x^6+4x^5+2x^4+x^3\right)+\left(x^{10}+2x^9+4x^8+6x^7+9x^6+6x^5+4x^4+2x^3+x^2\right)-\left(5x^9+10x^8+20x^7+30x^6+45x^5+30x^4+20x^3+10x^2+5x\right)+\left(3x^8+6x^7+12x^6+18x^5+27x^4+18x^3+12x^2+6x+3\right)=0\)

\(\Leftrightarrow x^3\left(x^8+2x^7+4x^6+6x^5+9x^4+6x^3+4x^2+2x+1\right)+x^2\left(x^8+2x^7+4x^6+6x^5+9x^4+6x^3+4x^2+2x+1\right)-5\left(x^8+2x^7+4x^6+6x^5+9x^4+6x^3+4x^2+2x+1\right)+3\left(x^8+2x^7+4x^6+6x^5+9x^4+6x^3+4x^2+2x+1\right)=0\)

\(\Leftrightarrow\left(x^3+x^2-5x+3\right)\left(x^8+2x^7+4x^6+6x^5+9x^4+6x^3+4x^2+2x+1\right)=0\)

\(\Leftrightarrow\left(x^2-2x+1\right)\left(x+3\right)\left(x^8+2x^7+4x^6+6x^5+9x^4+6x^3+4x^2+2x+1\right)=0\)

\(\Leftrightarrow\left(x-1\right)^2\left(x+3\right)\left(x^8+2x^7+4x^6+6x^5+9x^4+6x^3+4x^2+2x+1\right)=0\)

Dễ thấy: \(x^8+2x^7+4x^6+6x^5+9x^4+6x^3+4x^2+2x+1>0\forall x\)

Nên \(\left[{}\begin{matrix}\left(x-1\right)^2=0\\x+3=0\end{matrix}\right.\)\(\Rightarrow\left[{}\begin{matrix}x=1\\x=-3\end{matrix}\right.\)

Neet
16 tháng 6 2017 lúc 18:39

đex ~ vừa thấy trên face lướt qua luôn

Dang Dao Chau Giang
Xem chi tiết
Nguyễn Đức Trí
3 tháng 8 2023 lúc 12:25

Yêu cầu đề bài của bạn?

Dang Dao Chau Giang
3 tháng 8 2023 lúc 12:27

đề bài : Tính

 

Dang Dao Chau Giang
3 tháng 8 2023 lúc 12:30

C=(3x+2)3-18x.(3x+2)+(x-1)3-28x3+3x.(x-1)

Trần An
Xem chi tiết
Nguyễn Lê Phước Thịnh
3 tháng 2 2021 lúc 22:45

a) Ta có: \(x^2-3x+7=1+2x\)

\(\Leftrightarrow x^2-3x+7-1-2x=0\)

\(\Leftrightarrow x^2-3x-2x+6=0\)

\(\Leftrightarrow x\left(x-3\right)-2\left(x-3\right)=0\)

\(\Leftrightarrow\left(x-3\right)\left(x-2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-3=0\\x-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=2\end{matrix}\right.\)

Vậy: S={3;2}

b) Ta có: \(x^2-3x-10=0\)

\(\Leftrightarrow x^2-5x+2x-10=0\)

\(\Leftrightarrow x\left(x-5\right)+2\left(x-5\right)=0\)

\(\Leftrightarrow\left(x-5\right)\left(x+2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-5=0\\x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=5\\x=-2\end{matrix}\right.\)

Vậy: S={5;-2}

c) Ta có: \(x^2-3x+4=2\left(x-1\right)\)

\(\Leftrightarrow x^2-3x+4=2x-2\)

\(\Leftrightarrow x^2-3x+4-2x+2=0\)

\(\Leftrightarrow x^2-3x-2x+6=0\)

\(\Leftrightarrow x\left(x-3\right)-2\left(x-3\right)=0\)

\(\Leftrightarrow\left(x-3\right)\left(x-2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-3=0\\x-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=2\end{matrix}\right.\)

Vậy: S={3;2}

d) Ta có: \(\left(x+1\right)\left(x-2\right)\left(x-5\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+1=0\\x-2=0\\x-5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=2\\x=5\end{matrix}\right.\)

Vậy: S={-1;2;5}

e) Ta có: \(2x^2+3x+1=0\)

\(\Leftrightarrow2x^2+2x+x+1=0\)

\(\Leftrightarrow2x\left(x+1\right)+\left(x+1\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left(2x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+1=0\\2x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-1\\2x=-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=\dfrac{-1}{2}\end{matrix}\right.\)

Vậy: \(S=\left\{-1;\dfrac{-1}{2}\right\}\)

f) Ta có: \(4x^2-3x=2x-1\)

\(\Leftrightarrow4x^2-3x-2x+1=0\)

\(\Leftrightarrow4x^2-5x+1=0\)

\(\Leftrightarrow4x^2-4x-x+1=0\)

\(\Leftrightarrow4x\left(x-1\right)-\left(x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(4x-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\4x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\4x=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=\dfrac{1}{4}\end{matrix}\right.\)

Vậy: \(S=\left\{1;\dfrac{1}{4}\right\}\)

Trần An
3 tháng 2 2021 lúc 22:39

Ai giúp vs!