x+y/t+z=2018/2019 vì 2019y=2018z
tính tỉ số x/t
Biết rằng \(\frac{x+y}{t+z}=\frac{2018}{2019}\) và \(2019y=2018z\) Tính tỉ số \(\frac{x}{t}\)
GIÚP MÌNH VỚI MAI MÌNH KT RỒI
CẢM ƠN NHIỀU
AI LÀM ĐC MÌNH TICK CHO
!!!!!!!!!!!!!!!
\(\frac{x+y}{t+z}=\frac{2018}{2019}\Rightarrow\left(x+y\right).2019=\left(t+z\right).2018\)
\(\Rightarrow2019x+2019y=2018t+2018z\)
\(\Rightarrow2019x+2018z=2018t+2018z\)
\(\Rightarrow2019x=2018t\Rightarrow\frac{x}{t}=\frac{2018}{2019}\)
Biết 2019z-2020y/2018=2020x-2018z/2019=2018y-2019x/2010. Chứng minh 2018/x=2019/y=2020/z
Cho x,y,z là các số thực dương thỏa mãn x+y+z=\(\sqrt{2}\) Chứng minh rằng:
\(\sqrt{2019x^2+2xy+2019y^2}+\sqrt{2019y^2+2yz+2019z^2}+\sqrt{2018z^2+2zx+2019x^2}\)
Bổ xung \(\ge2\sqrt{2020}\)
Chỗ cuối là 2019z2 nha
\(1010x^2+2xy+1010y^2+1009\left(x^2+y^2\right)\ge1010x^2+2xy+1010y^2+2018xy\)
\(=1010\left(x^2+2xy+y^2\right)=1010\left(x+y\right)^2\)
\(\Rightarrow\sqrt{2019x^2+2xy+2019y^2}\ge\sqrt{1010}\left(x+y\right)\)
Làm tương tự và cộng lại
\(\Rightarrow VT\ge1010\left(x+y+y+z+z+x\right)=\sqrt{1010}.2\sqrt{2}=2\sqrt{2020}\)
Dấu "=" xảy ra khi \(x=y=z=\frac{\sqrt{2}}{3}\)
cho x^2018+y^2018+z^20018+t^2018/a^2+b^2+c^2+d^2
=x^2018/a^2+y^2018/b^2+z^2018/c^2+t^2018/d^2tính T=x^2019+y^2019+z^2019+t^2019
giúp mik nha mn ơi.
mik cần gấp bâgiowf
Có tìm được các số nguyên x, y, z sao cho:
(2016x - 2017y) - (2016x - 2018z) + (2017y - 2018z) = 2018 không? Giải thích.
\(\left(2016x-2017y\right)-\left(2016x-2018z\right)+\left(2017y-2018z\right)\)
\(=2016x-2017y-\left(2016x-2018x\right)+2017y-2018z\)
\(=2016x-2016x+2018z-2018z\)
\(=0\)
Vậy \(\left(2016x-2017\right)-\left(2016x-2018z\right)+\left(2017y-2018z\right)\ne2018\)
Ta có: \(\left(2016x-2017y\right)-\left(2016x-2018z\right)+\left(2017y-2018z\right)\)
\(=2016x-2017y-2016x+2018z+2017y-2018z\)
\(=0\) ( khác với đề bài )
\(\Rightarrow\) không tìm được các số nguyên x, y, z
Vậy...
Cho các số \(a,b,c,d\ne0\). Tính
\(T=x^{2019}+y^{2019}+z^{2019}+t^{2019}\)
Biết \(x,y,z,t\)thoả mãn: \(\frac{x^{2018}+y^{2018}+z^{2018}+t^{2018}}{a^2+b^2+c^2+d^2}=\frac{x^{2018}}{a^2}+\frac{y^{2018}}{b^2}+\frac{z^{2018}}{c^2}+\frac{t^{2018}}{d^2}\)
cho x,y,z là 3 số dương biết x+y+z=2019 . tìm min P = \(\dfrac{x}{x+\sqrt{2019x+yz}}+\dfrac{y}{y+\sqrt{2019y+xz}}+\dfrac{z}{z+\sqrt{2019z+xy}}\)
Cho x + y + z = 2019 và x-2019y/z= y -2019z/x= z- 2019x/y ;x, y,z khác 0 . Tính x, y, z?
Cho a,b,c,d khác 0, thỏa mãn :
\(\frac{x^{2018}+y^{2018}+z^{2018}+t^{2018}}{a^2+b^2+c^2+d^2}\) =\(\frac{x^{2018}}{a^2}\)+\(\frac{y^{2018}}{b^2}\)
Tính A=x2019+y2019+z2019+t2019