\(x^4+3x^3-\left(2m-1\right)x^2-\left(3m-1\right)x+m^2+m=0\)
tìm x để PT có 4 nghiệm phân biệt
\(x^4+3x^3-\left(2m-1\right)x^2-\left(3m-1\right)x+m^2+m=0\)
tìm m để PT có 4 nghiệm phân biệt
\(x^4+3x^3-\left(2m-1\right)x^2-\left(3m-1\right)x+m^2+m=0\)
tìm m để PT có 4 nghiệm phân biệt
Tìm m để pt có nghiệm phân biệt trái dấu
a) \(2x^2-\left(m^2-m+1\right)x+2m^2-3m-5=0\)
b) \(\left(m^2-3m+2\right)x^2-2m^2x-5=0\)
c) \(x^2-2\left(m-1\right)+m^2-2m=0\)( nghiệm âm có giá trị tuyệt đối lớn hơn)
a, Phương trình có hai nghiệm trái dấu khi \(2\left(2m^2-3m-5\right)< 0\)
\(\Leftrightarrow\left(2m-5\right)\left(m+1\right)< 0\)
\(\Leftrightarrow-1< m< \dfrac{5}{2}\)
b, TH1: \(m^2-3m+2=0\Leftrightarrow\left[{}\begin{matrix}m=1\\m=2\end{matrix}\right.\)
Phương trình đã cho có nghiệm duy nhất
TH2: \(m^2-3m+2\ne0\Leftrightarrow\left\{{}\begin{matrix}m\ne1\\m\ne2\end{matrix}\right.\)
Phương trình có hai nghiệm trái dấu khi \(-5\left(m^2-3m+2\right)< 0\)
\(\Leftrightarrow m^2-3m+2>0\)
\(\Leftrightarrow\left[{}\begin{matrix}m>2\\m< 1\end{matrix}\right.\)
Vậy \(m>2\) hoặc \(m< 1\)
c, Phương trình đã cho có hai nghiệm trái dấu \(x_1,x_2\) khi \(m^2-2m< 0\Leftrightarrow0< m< 2\)
Theo định lí Viet: \(x_1+x_2=2\left(m-1\right)\)
Yêu cầu bài toán thỏa mãn khi \(x_1+x_2< 0\Leftrightarrow2\left(m-1\right)< 0\Leftrightarrow m< 1\)
Vậy \(0< m< 1\)
Đặt x2 + 2x + 4 = t . Điều kiện : t ≥ 3
Phương trình đã cho trở thành t2 - 2mt - 1 = 0 (1)
(1) là phương trình hoành độ giao điểm của đồ thị hàm số y = t2 - 2mt - 1 với trục Ox (tức đường thẳng y = 0). Yêu cầu bài toán thỏa mãn khi (1) có 2 nghiệm phân biệt t thỏa mãn t ≥ 3
Ta có bảng biến thiên của hàm số y = t2 - 2mt - 1
Nếu m > 3 thì yêu cầu bài toán thỏa mãn khi
8 - 6m ≥ 0 ⇔ m ≤ \(\dfrac{4}{3}\) (không thỏa mãn m > 3)
Nếu m < 3, yêu cầu bài toán thỏa mãn khi
8 - 6t ≤ 0 ⇔ m ≥ \(\dfrac{4}{3}\) Vậy m ∈ \(\)[\(\dfrac{4}{3};3\))
Nếu m = 3 thì phương trình trở thành
t2 - 6t - 1 = 0 có 2 nghiệm thỏa mãn \(\left\{{}\begin{matrix}t_1+t_2=6\\t_1.t_2=-1\end{matrix}\right.\)
tức phương trình có 2 nghiệm trái dấu (không thỏa mãn điều kiện 2 nghiệm t ≥ 3) nên m = 3 không thỏa mãn yêu cầu bài toán
Vậy tập hợp các giá trị m thỏa mãn yêu cầu bài toán là M = \(\left\{m\in R;\dfrac{4}{3}\le m< 3\right\}\)
cho phương trình \(x^2+\left(2m-1\right)x+m^2-3m-4=0\)(1)
xác định các giá trị của m để pt (1) cóhai nghiệm phân biệt x1,x2 tmđk\(\left|x_1-x_2\right|-2=0\)
Lời giải:
Để pt có 2 nghiệm pb thì:
$\Delta'=(2m-1)^2-4(m^2-3m-4)=8m+17>0\Leftrightarrow m> \frac{-17}{8}$
Áp dụng định lý Viet:
$x_1+x_2=1-2m$
$x_1x_2=m^2-3m-4$
Khi đó:
$|x_1-x_2|-2=0$
$\Leftrightarrow |x_1-x_2|=2$
$\Leftrightarrow (x_1-x_2)^2=4$
$\Leftrightarrow (x_1+x_2)^2-4x_1x_2=4$
$\Leftrightarrow (1-2m)^2-4(m^2-3m-4)=4$
$\Leftrightarrow 8m+17=4$
$\Leftrightarrow m=\frac{-13}{8}$ (tm)
Lời giải:
Để pt có 2 nghiệm pb thì:
$\Delta'=(2m-1)^2-4(m^2-3m-4)=8m+17>0\Leftrightarrow m> \frac{-17}{8}$
Áp dụng định lý Viet:
$x_1+x_2=1-2m$
$x_1x_2=m^2-3m-4$
Khi đó:
$|x_1-x_2|-2=0$
$\Leftrightarrow |x_1-x_2|=2$
$\Leftrightarrow (x_1-x_2)^2=4$
$\Leftrightarrow (x_1+x_2)^2-4x_1x_2=4$
$\Leftrightarrow (1-2m)^2-4(m^2-3m-4)=4$
$\Leftrightarrow 8m+17=4$
$\Leftrightarrow m=\frac{-13}{8}$ (tm)
Để pt 1 có 2 nghiệm phân biệt =>\(\Delta\)>0
<=> (2m-1(2 - 4(m2-3m-4( >0
<=> 4m2 - 4m + 1 - 4m2+12m+16 > 0
<=>8m +17>0
<=> m>-17/8
=> theo hệ thức Vi ét ta có
x1+x2=-2m+1 *
x1.x2=m2-3m-4 *
Theo bài ra ta có pt
|x1−x2|−2=0
<=> |x1−x2|=2
<=> (x1-x2(2=22
<=> x12 - 2x1.x2 + x22 = 4
<=> (x1 + x2 > 2- 4 x1x2 = 4 <**>
Thay *,* vào <**> ta được :
(-<2m-1>>2 - 4<m2-3m-4> = 4
<=> 4m2-4m+1 - 4m2+12m+16=4
<=> 8m + 17= 4
<=> 8m = 13
<=> m= 13/8 < t/m >
Vậy m = 13/8 là giá trị cần tìm
tìm m để pt \(\left[x^2-2mx-4\left(m^2+1\right)\right]\left[x^2-4x-2m\left(m^2+1\right)\right]=0\) có 3 nghiệm phân biệt
Bài toán bạn định hỏi, theo tác giả nói, có đúng 3 nghiệm phân biệt.
Để phương trình \(x^2-2mx-4\left(m^2+1\right)=0\) luôn có 2 nghiệm phân biệt (vì \(\Delta^'=m^2+4\left(m^2+1\right)=5m^2+4>0.\))
Xét phương trình thứ hai \(x^2-4x-2m\left(m^2+1\right)=0\). Nếu phương trình này vô nghiệm thì pt đã cho có tối đa 2 nghiệm, mâu thuẫn. Vậy phương trình thứ 2 có nghiệm kép hoặc có 2 nghiệm phân biệt.
Xét trường hợp phương trình thứ hai có nghiệm kép, tức
\(4+2m^3+2m=0\to m^3+m+2=0\to\left(m+1\right)\left(m^2-m+2\right)=0\)
Do đó \(m=-1.\) Thử lại, không thoả mãn vì phương trình đầu có nghiệm x=2.
Nếu phương trình thứ hai có hai nghiệm phân biệt thì hai phương trình phải có nghiệm chung là \(x_0\), do đó
\(x^2_0-4x_0-2m\left(m^2+1\right)=0\) và \(x_0^2-2mx_0-4\left(m^2+1\right)=0\). Trừ hai phương trình ta được \(\left(2m-4\right)x_0=\left(2m-4\right)\left(m^2+1\right)\). Do đó \(m=2\) hoặc \(x_0=m^2+1.\) Khi \(m=2\) thì hai phương trình trùng nhau nên phương trình đã cho có đúng 2 nghiệm phân biệt, loại. Giả sử \(x_0=m^2+1.\)Khi đó \(\left(m^2+1\right)^2-4\left(m^2+1\right)-2m\left(m^2+1\right)=0\to m^2+1-4-2m=0\)
\(m^2-2m-3=0\to m=-1,3.\)
Thử lại ta thấy \(m=-1,3\) đều thoả mãn.
Tìm m để pt có 3 nghiệm phân biệt lập thành 1 cấp số cộnga, \(x^3-3mx^2+2m\left(m-4\right)x+9m^2-m=0\)
b, \(\left(m-3\right)x^3+18x^2+72x+m^3-4m=0\)
1.
Do 3 nghiệm lập thành cấp số cộng \(\Rightarrow2x_2=x_1+x_3\)
Mà \(x_1+x_2+x_3=3m\)
\(\Rightarrow3x_2=3m\Rightarrow x_2=m\)
Thay lại pt ban đầu:
\(m^3-3m^3+2m\left(m-4\right)m+9m^2-m=0\)
\(\Leftrightarrow m^2-m=0\Rightarrow\left[{}\begin{matrix}m=0\\m=1\end{matrix}\right.\)
- Với \(m=0\Rightarrow x^3=0\Rightarrow\) pt có đúng 1 nghiệm (ktm)
- Với \(m=1\Rightarrow x^3-3x^2-6x+8=0\Rightarrow\left[{}\begin{matrix}x=-2\\x=1\\x=4\end{matrix}\right.\) (thỏa mãn)
Vậy \(m=1\)
Cho pt: \(x^3+\left(m+1\right)x^2+2\left(m-2\right)x-3m+2=0\)
a) Tìm m để pt có 3 nghiệm phân biệt
b) Tìm m để pt có 3 nghiệm phân biệt <2
1. Tìm m để pt : \(x^2-\left(2m-3\right)x+m^2-4=0\) có 2 nghiệm pb sao cho tổng bp 2 nghiệm <17
2. Tìm m để pt \(x^4-\left(m+1\right)x^2+m^2-m+2=0\) có 3 nghiệm pb
3. Tìm m để pt \(x^2-6x+m-2=0\) có 2 nghiệm x>0
1.
Yêu cầu bài toán thỏa mãn khi:
\(\left\{{}\begin{matrix}\Delta=25-12m>0\\x_1^2+x_2^2< 17\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m< \dfrac{25}{12}\\\left(x_1+x_2\right)^2-2x_1x_2< 17\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m< \dfrac{25}{12}\\\left(2m-3\right)^2-2\left(m^2-4\right)< 17\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m< \dfrac{25}{12}\\2m^2-12m< 0\end{matrix}\right.\)
\(\Leftrightarrow0< m< \dfrac{25}{12}\)
3.
Yêu cầu bài toán thỏa mãn khi:
\(\left\{{}\begin{matrix}\Delta'=11-m>0\\x_1+x_2>0\\x_1x_2>0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m< 11\\6>0\\m-2>0\end{matrix}\right.\)
\(\Leftrightarrow2< m< 11\)