1.
Do 3 nghiệm lập thành cấp số cộng \(\Rightarrow2x_2=x_1+x_3\)
Mà \(x_1+x_2+x_3=3m\)
\(\Rightarrow3x_2=3m\Rightarrow x_2=m\)
Thay lại pt ban đầu:
\(m^3-3m^3+2m\left(m-4\right)m+9m^2-m=0\)
\(\Leftrightarrow m^2-m=0\Rightarrow\left[{}\begin{matrix}m=0\\m=1\end{matrix}\right.\)
- Với \(m=0\Rightarrow x^3=0\Rightarrow\) pt có đúng 1 nghiệm (ktm)
- Với \(m=1\Rightarrow x^3-3x^2-6x+8=0\Rightarrow\left[{}\begin{matrix}x=-2\\x=1\\x=4\end{matrix}\right.\) (thỏa mãn)
Vậy \(m=1\)