Số hạng tổng quát trong khai triển: \(C_n^k\left(-\frac{1}{4}\right)^k.x^{n-k}\)
Số hạng chứa \(x^{n-2}\Rightarrow k=2\) có hệ số: \(C_n^k\left(-\frac{1}{4}\right)^k=\frac{1}{16}.C_n^2\)
\(\Rightarrow\frac{1}{16}.C_n^2=31\Rightarrow C_n^2=496\)
\(\Rightarrow\frac{n!}{2!.\left(n-2\right)!}=496\Leftrightarrow n\left(n-1\right)=992\)
\(\Leftrightarrow n^2-n-992=0\Rightarrow n=32\)