phân tích đa thức sau thành nhân tử
3(x+3)-x2+9
Phân tích đa thức thành nhân tử : (x2 + 6x + 9)3 - y6
\(=\left(x+3\right)^6-y^6\\ =\left[\left(x+3\right)^3-y^3\right]\left[\left(x+3\right)^3+y^3\right]\\ =\left(x+3-y\right)\left[\left(x+3\right)^2+y\left(x+3\right)+y^2\right]\left(x+3+y\right)\left[\left(x+3\right)^2-y\left(x+3\right)+y^2\right]\\ =\left(x+y+3\right)\left(x-y+3\right)\left(x^2+6x+9+xy+3y+y^2\right)\left(x^2+6x+9-xy-3y+y^2\right)\)
\(\left(x^2+6x+9\right)^3-\left(y^2\right)^3=\left(x^2+6x+9-y^2\right)\left[\left(x^2+6x+9\right)^2+\left(x^2+6x+9\right)y^2+y^4\right]\)
\(=\left[\left(x+3\right)^2-y^2\right]\left\{\left[\left(x^2+6x+9\right)^2+2\left(x^2+6x+9\right)y^2+y^4\right]-\left(x^2+6x+9\right)y^2\right\}\)
\(=\left(x+3-y\right)\left(x+3+y\right)\left[\left(x^2+6x+9+y^2\right)^2-\left(x+3\right)^2y^2\right]\)
\(=\left(x+3-y\right)\left(x+3+y\right)\left[\left(x^2+6x+9+y^2\right)-\left(x+3\right)y\right]\left(x^2+6x+9+y^2\right)+\left(x+3\right)y\)
\(=\left(x+3-y\right)\left(x+3+y\right)\left(x^2+6x+9+y^2-xy-3y\right)\left(x^2+6x+9+y^2+xy+3y\right)\)
Phân tích đa thức sau thành nhân tử : x2(x + 4)2 – (x + 4)2 – (x2 – 1)
\(x^2\left(x+4\right)^2-\left(x+4\right)^2-\left(x^2-1\right)\\ =\left(x+4\right)^2\left(x^2-1\right)-\left(x^2-1\right)\\ =\left(x^2-1\right)\left[\left(x+4\right)^2-1\right]\\ =\left(x-1\right)\left(x+1\right)\left(x+4-1\right)\left(x+4+1\right)\\ =\left(x-1\right)\left(x+1\right)\left(x+3\right)\left(x+5\right)\)
\(= (x+4)^2(x^2-1)-(x^2-1)=[(x+4)^2-1](x^2-1)\)
\(=(x+4-1)(x+4+1)(x-1)(x+1)\)
\(=(x+3)(x+5)(x-1)(x+1)\)
\(x^2\left(x+4\right)^2-\left(x+4\right)^2-\left(x^2-1\right)\)
\(=\left(x+4\right)^2\left(x^2-1\right)-\left(x^2-1\right)\)
\(=\left(x^2-1\right)\left[\left(x+4\right)^2-1\right]\)
\(=\left(x^2-1\right)\left(x+3\right)\left(x+5\right)\)
Phân tích đa thức thành nhân tử : (x2 + 6x – 5)(x2 + 6x + 3) – 20
Ta có: (x2+6x-5)(x2+6x+3)-20
= [(x2+6x-1)-4][(x2+6x-1)+4]-20
= (x2+6x-1)2-16-20
= (x2+6x-1)2-36
= (x2+6x-7)(x2+6x-5)
= (x+7)(x-1)(x2+6x-5)
\(\left(x^2+6x-5\right)\left(x^2+6x+3\right)\\ =\left(x^2+6x-1\right)^2-16-20\\ =\left(x^2+6x-1\right)^2-36\\ =\left(x^2+6x-1-6\right)\left(x^2+6x-1+6\right)\\ =\left(x^2+6x-7\right)\left(x^2+6x+5\right)\\ =\left(x-1\right)\left(x+7\right)\left(x+1\right)\left(x+5\right)\)
\(\left(x^2+6x-5\right)\left(x^2+6x+3\right)-20\)
\(=\left(x^2+6x\right)^2-2\left(x^2+6x\right)-35\)
\(=\left(x^2+6x-7\right)\left(x^2+6x+5\right)\)
\(=\left(x+7\right)\left(x-1\right)\left(x+1\right)\left(x+5\right)\)
Phân tích đa thức thành nhân tử : (x2 + 5x – 3)(x2 + 5x – 5) – 15
\(\left(x^2+5x-3\right)\left(x^2+5x-5\right)-15=\left(x^2+5x-3\right)\left(x^2+5x-3-2\right)-15=\left(x^2+5x-3\right)^2-2\left(x^2+5x-3\right)+1-16=\left(x^2+5x-3-1\right)^2-4^2=\left(x^2+5x-4\right)^2-4^2=\left(x^2+5x-8\right)\left(x^2+5x\right)=x\left(x+5\right)\left(x^2+5x-8\right)\)
\(\left(x^2+5x-3\right)\left(x^2+5x-5\right)-15\)
\(=\left(x^2+5x\right)^2-8\left(x^2+5x\right)-15\)
\(=x\left(x+5\right)\left(x^2+5x-8\right)\)
Phân tích đa thức thành nhân tử : x2 + 3y2 - 4xy + 10x - 12y + 9
\(x^2+3y^2-4xy+10x-12y+9\)
\(=\left(x^2-xy+x\right)+9x-3xy+3y^2-12y+9\)
\(=\left(x^2-xy+x\right)+\left(9x-9y+9\right)-3xy+3y^2-3y\)
\(=\left(x^2-xy+x\right)+\left(9x-9y+9\right)-\left(3xy-3y^2+3y\right)\)
\(=x\left(x-y+1\right)+9\left(x-y+1\right)-3y\left(x-y+1\right)\\ =\left(x-y+1\right)\left(x+9-3y\right)\)
Phân tích đa thức thành nhân tử : x2 – x – 2020*2021
\(x^2-x-2020.2021=x^2+2020x-2021x-2020.2021=x\left(x+2020\right)-2021\left(x+2020\right)=\left(x+2020\right)\left(x-2021\right)\)
\(x^2-x-2020\cdot2021\)
\(=\left(x-2021\right)\left(x+2020\right)\)
Phân tích đa thức thành nhân tử : (x2 + x)2 + 4x2 + 4x – 12
\(\left(x^2+x\right)^2+4x^2+4x-12=\left[\left(x^2+x\right)^2+4\left(x^2+x\right)+4\right]-16=\left(x^2+x+2\right)-4^2=\left(x^2+x+2-4\right)\left(x^2+x+2+4\right)=\left(x^2+x-2\right)\left(x^2+x+6\right)=\left(x-1\right)\left(x+2\right)\left(x^2+x+6\right)\)
\(\left(x^2+x\right)^2+4x^2+4x-12\\ =\left(x^2+x+2\right)-4\\ =\left(x^2+x-2\right)\left(x^2+x+6\right)\)
\(\left(x^2+x\right)^2+4x^2+4x-12\)
\(=\left(x^2+x+6\right)\left(x^2+x-2\right)\)
\(=\left(x^2+x+6\right)\left(x+2\right)\left(x-1\right)\)
Phân tích đa thức sau thành nhân tử : (x2 + 4x + 8)2 + 3x(x2 + 4x + 8) + 2x2
\(\left(x^2+4x+8\right)^2+3x\left(x^2+4x+8\right)+2x^2=\left(x^2+4x+8\right)^2+2x\left(x^2+4x+8\right)+x\left(x^2+4x+8\right)+2x^2\)
\(=\left(x^2+4x+8\right)\left(x^2+4x+8+2x\right)+x\left(x^2+4x+8+2x\right)\)
\(=\left(x^2+4x+8\right)\left(x^2+6x+8\right)+x\left(x^2+6x+8\right)\)
\(=\left(x^2+4x+8+x\right)\left(x^2+6x+8\right)=\left(x^2+5x+8\right)\left(x^2+6x+8\right)\)
Ta có: \(\left(x^2+4x+8\right)^2+3x\left(x^2+4x+8\right)+2x^2\)
\(=\left(x^2+5x+8\right)\left(x^2+6x+8\right)\)
\(=\left(x^2+5x+8\right)\left(x+2\right)\left(x+4\right)\)
Phân tích đa thức sau thành nhân tử : xn + 3 + xn
\(x^{n+3}+x^n=x^n.x^3+x^n=x^n\left(x^3+1\right)=x^n\left(x+1\right)\left(x^2-x+1\right)\)
\(x^{n+3}+x^n=x^n\left(x^3+1\right)=x^n\left(x+1\right)\left(x^2-x+1\right)\)
\(x^{n+3}+x^n=x^n\left(x^3+1\right)=x^n\cdot\left(x+1\right)\left(x^2-x+1\right)\)
Phân tích đa thức thành nhân tử : x2 – 3x – 15
x2-2x-15=(x2-5x)+(3x-15)=x(x-5)+3(x-5)=(x-5)(x+3)
\(x^2-3x-15=\left(x^2-2.\dfrac{3}{2}x+\dfrac{9}{4}\right)-\dfrac{69}{4}=\left(x-\dfrac{3}{2}\right)^2-\left(\dfrac{\sqrt{69}}{2}\right)^2\)
\(=\left(x-\dfrac{3}{2}-\dfrac{\sqrt{69}}{2}\right)\left(x-\dfrac{3}{2}+\dfrac{\sqrt{69}}{2}\right)\)
\(x^2-2x-15=\left(x-5\right)\left(x+3\right)\)