Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
hieu vuquy
Xem chi tiết
Đỗ Thanh Tùng
Xem chi tiết
Nguyễn Trọng Chiến
1 tháng 2 2021 lúc 14:06

\(\left\{{}\begin{matrix}x+mx=2\\mx-2y=1\end{matrix}\right.\)

Nếu m=0 \(\Rightarrow\left\{{}\begin{matrix}x=2\\-2y=1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=\dfrac{-1}{2}< 0\end{matrix}\right.\) (L)

Nếu m≠0 \(\Rightarrow\left\{{}\begin{matrix}mx+m^2y=2m\left(1\right)\\mx-2y=1\left(2\right)\end{matrix}\right.\)

Trừ từng vế của (1) cho (2) ta được:

\(m^2y+2y=2m-1\) \(\Leftrightarrow\left(m^2+2\right)y=2m-1\) \(\Leftrightarrow y=\dfrac{2m-1}{m^2+2}\) Thay vào (2) ta được:

\(mx-2\cdot\dfrac{2m-1}{m^2+2}=1\) \(\Leftrightarrow mx=1+\dfrac{4m-2}{m^2+2}=\dfrac{m^2+2+4m-2}{m^2+2}=\dfrac{m\left(m+4\right)}{m^2+2}\) 

\(x=\dfrac{m+4}{m^2+2}\)

Vì x>0, y>0 \(\Rightarrow\left\{{}\begin{matrix}\dfrac{2m-1}{m^2+2}>0\\\dfrac{m+4}{m^2+2}>0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}2m-1>0\\m+4>0\end{matrix}\right.\) Vì \(m^2+2\ge2>0\)

\(\Leftrightarrow\left\{{}\begin{matrix}m>\dfrac{1}{2}\\m>-4\end{matrix}\right.\) \(\Leftrightarrow m>\dfrac{1}{2}\) Vậy...

 

Tung Do
Xem chi tiết
Đỗ Thanh Tùng
Xem chi tiết
Đỗ Thanh Tùng
Xem chi tiết
𝓓𝓾𝔂 𝓐𝓷𝓱
23 tháng 1 2021 lúc 20:09

a) Thay \(m=1\) vào hệ phương trình, ta được:

\(\left\{{}\begin{matrix}3x-y=1\\x+2y=5\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=2\end{matrix}\right.\)

  Vậy ...

b) HPT \(\Leftrightarrow\left\{{}\begin{matrix}6x-2y=4m-2\\x+2y=3m+2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}7x=7m\\y=2m-1-3x\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=m\\y=-m-1\end{matrix}\right.\)

Ta có: \(x^2+y^2=5\) 

\(\Rightarrow m^2+m^2+2m+1=5\) \(\Leftrightarrow m^2+m-2=0\) \(\Rightarrow\left[{}\begin{matrix}m=1\\m=-2\end{matrix}\right.\)

  Vậy ...

c) Hệ phương trình luôn có nghiệm duy nhất

Ta có: \(x-3y>0\)

\(\Rightarrow m-3\left(-m-1\right)>0\)

\(\Leftrightarrow4m+3>0\) \(\Leftrightarrow m>-\dfrac{3}{4}\)

  Vậy ...

Nhan Ngo
Xem chi tiết
Nguyễn Lê Phước Thịnh
20 tháng 3 2021 lúc 20:05

a) Thay m=1 vào hệ pt, ta được:

\(\left\{{}\begin{matrix}3x-y=1\\x+2y=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3x-y=1\\3x+6y=15\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}-7y=-14\\x+2y=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=2\\x=5-2y=5-2\cdot2=1\end{matrix}\right.\)

Vậy: Khi m=1 thì hệ phương trình có nghiệm duy nhất là (x,y)=(1;2)

nguyễn hà
Xem chi tiết
37.Nguyễn Phan Phương Vy
Xem chi tiết
Nguyễn Hà Thành Đạt
22 tháng 4 2022 lúc 22:03

a, với m = 2 ta có hệ phương trình :

\(\left\{{}\begin{matrix}-2x+y=3\\2x-2y=2\end{matrix}\right.\) ⇔ \(\left\{{}\begin{matrix}-y=5\\2x-2y=2\end{matrix}\right.\)  ⇔ \(\left\{{}\begin{matrix}y=-5\\2x+10=2\end{matrix}\right.\) ⇔ \(\left\{{}\begin{matrix}y=-5\\2x=-8\end{matrix}\right.\) ⇔ \(\left\{{}\begin{matrix}y=-5\\x=-4\end{matrix}\right.\) 

Vậy với m = 2  thì hệ phương trình trên có nghiệm là : ( x ; y ) = ( -4 ; -5 )

b, chx làm :(

Phước Nhanh Nguyễn
Xem chi tiết