cho x>0,y>0 và x+y<=1 chứng minh:1/(x2+xy)+1/(y2+xy)>= 4
Ta co: \(\hept{\begin{cases}x^2-y+\frac{1}{4}=0\\y^2-x+\frac{1}{4}=0\end{cases}}\)
\(\Rightarrow x^2-x+\frac{1}{4}+y^2-y+\frac{1}{4}=0\)
\(\Rightarrow\left(x-\frac{1}{2}\right)^2+\left(y-\frac{1}{2}\right)^2=0\)
\(\Rightarrow\hept{\begin{cases}x-\frac{1}{2}=0\\y-\frac{1}{2}=0\end{cases}\Rightarrow x=y=\frac{1}{2}}\)
Vậy \(x=y=\frac{1}{2}\)
Ta có: \(\hept{\begin{cases}x^2-y+\frac{1}{4}=0\\y^2-x+\frac{1}{4}=0\end{cases}}\)
\(\Rightarrow\left(x^2-x+\frac{1}{4}\right)+\left(y^2-y+\frac{1}{4}\right)=0\)
\(\Rightarrow\left(x-\frac{1}{2}\right)^2+\left(y-\frac{1}{2}\right)^2=0\)
\(\Rightarrow\hept{\begin{cases}x-\frac{1}{2}=0\\y-\frac{1}{2}=0\end{cases}\Rightarrow x=y=\frac{1}{2}}\)
Vậy \(x=y=\frac{1}{2}\)
x>0 y>0 x+y=4
tìm min E cho x>0 y>0 và x+y=4 tìm min E= (x+1/x)^2 +(y+1/y)^2 +2018
Cho hai số x và y thỏa mãn: x2- y + 1/4 =0 và y2- x + 1/4 =0. Tìm x và y
cho x>0 và y>0 cm (x+y)(1/x+1/y) lớn hơn hoặc bằng 4
Áp dụng BĐT AM-GM,ta có:
\(\dfrac{1}{x}+\dfrac{1}{y}\ge\dfrac{4}{x+y}\)
\(\Rightarrow\left(x+y\right)\left(\dfrac{1}{x}+\dfrac{1}{y}\right)\ge\dfrac{4\left(x+y\right)}{x+y}\)
\(\Leftrightarrow\left(x+y\right)\left(\dfrac{1}{x}+\dfrac{1}{y}\right)\ge4\) ( đfcm )
Có: \(\left(x+y\right)\left(\dfrac{1}{x}+\dfrac{1}{y}\right)\ge4\)⇔\(\dfrac{1}{x}+\dfrac{1}{y}\ge\dfrac{4}{x+y}\)⇔\(\dfrac{y+x}{xy}\ge\dfrac{4}{x+y}\)
⇔\(\dfrac{\left(x+y\right)\left(x+y\right)}{xy\left(x+y\right)}\ge\dfrac{4xy}{xy\left(x+y\right)}\)⇔\(\left(x+y\right)^2\ge4xy\)⇔\(x^2+2xy+y^2\ge4xy\)
⇔\(x^2-4xy+2xy+y^2\ge0\)⇔\(x^2-2xy+y^2\ge0\)⇔\(\left(x-y\right)^2\ge0\) luôn đúng
Cho x > 0; y > 0 và (\(\sqrt{x}\) +1)(\(\sqrt{y}+1\)) ≥4. Chứng minh rằng: x + y ≥ 2
Cho x > 0; y > 0 và x+y<=4/3 . Tìm giá trị nhỏ nhất của biểu thức M=x+y+1/x+1/y
Áp dụng BĐT cosi cho \(x,y>0\)
\(M=x+y+\dfrac{1}{x}+\dfrac{1}{y}\ge2\sqrt{x\cdot\dfrac{1}{x}}+2\sqrt{y\cdot\dfrac{1}{y}}=4\)
Dấu \("="\Leftrightarrow x=y=1\)
Mà \(x+y=2\le\dfrac{4}{3}\left(vô.lí\right)\) nên dấu \("="\) không xảy ra
Vậy M không có GTNN
Cho x>0, y>0, z>0 và \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=4\). CM: \(\dfrac{1}{2x+y+z}+\dfrac{1}{x+2y+z}+\dfrac{1}{x+y+2z}\le1\)
cho x, y, z khác 0 và x+y+z=0. chứng minh rằng (x²+y²+z²)*3/(x*3+y*3+z*3)² >=4
cho x>0,y>0.Biết x/2=y/4 và x^2.y^2=4 Như vậy cặp số (x;y) thỏa mãn đề bài là
Dat x/2=y/4=k la dc ma
X=1;y=2 nhe bn!
Cho x>y>0 và x-y=7, xy=60
a) \(x^2-y^2\)
b) \(x^4+y^4\)
a) \(\left(x-y\right)^2=x^2-2xy+y^2=x^2+y^2-2xy\)
\(\Rightarrow x^2+y^2=\left(x-y\right)^2+2xy=7^2+2.60\)
\(\Rightarrow x^2+y^2=169\)
\(\left(x+y\right)^2=x^2+y^2+2xy=169+2.60\)
\(\Rightarrow\left(x+y\right)^2=289=17^2\)
\(\Rightarrow x+y=17\)
\(x^2-y^2=\left(x+y\right)\left(x-y\right)=17.7=119\)
b) \(\left(x^2+y^2\right)^2=\left(x^2\right)^2+\left(y^2\right)^2+2x^2y^2=x^4+y^4+2\left(xy\right)^2\)
\(\Rightarrow x^4+y^4=\left(x^2+y^2\right)^2-2\left(xy\right)^2=169^2-2.60^2\)
\(\Rightarrow x^4+y^4=28561-7200=21361\)