Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
The World In Me
Xem chi tiết
Kẻ Lạnh Lùng
Xem chi tiết
Huy Nguyễn minh
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
4 tháng 5 2019 lúc 17:31

1) Ta có

  B I C ^ = 180 0 − I B C ^ − I C B ^ = 180 0 − A B C ^ 2 − A C B ^ 2 = 180 0 − 180 ∘ − B A C ^ 2 = 90 0 + B A C ^ 2 ⇔ B A C ^ = 2 B I C ^ − 180 °

Tương tự B Q C ^ = 90 0 + B P C ^ 2 ⇔ B P C ^ = 2 B Q C ^ − 180 ° .

Tứ giác BPAC nội tiếp, suy ra B A C ^ = B P C ^ ⇒ B Q C ^ = B I C ^ , nên 4 điểm B, I, Q, C thuộc một đường tròn.

2) Gọi đường tròn (B; BI) giao (C; CI) tại K khác I thì K cố định.

Góc I B M ^  là góc ở tâm chắn cung I M ⏜  và I K M ^  là góc nội tiếp chắn cung  I M ⏜ , suy ra I K M ^ = 1 2 I B M ^  (1).

Tương tự I K N ^ = 1 2 I C N ^  (2).

Theo câu 1) B, I, Q, C thuộc một đường tròn, suy ra  I B M ^ = I B Q ^ = I C Q ^ = I C N ^  (3).

Từ (1), (2) và (3), suy ra I K M ^ = I K N ^ ⇒ K M ≡ K N .

Vậy MN đi qua K cố định.

Nguyễn Lê Kim Trúc
Xem chi tiết
Nguyễn Minh Quân
Xem chi tiết
Nguyễn Lê Phước Thịnh
20 tháng 3 2023 lúc 11:03

a: góc CDM=góc CEM=90 độ

=>CDEM nội tiếp

b: Xet ΔMEA vuông tại E và ΔMDB vuông tại D có

góc EMA chung

=>ΔMEA đồng dạng với ΔMDB

=>ME/MD=MA/MB

=>ME*MB=MA*MD

Minh Châu Thái Thị
20 tháng 3 2023 lúc 11:39

a. góc CDM=góc CEM=90 độ

=>CDEM nội tiếp

b. Xet ΔMEA vuông tại E và ΔMDB vuông tại D có

góc EMA chung

=>ΔMEA đồng dạng với ΔMDB

=>ME/MD=MA/MB

=>ME*MB=MA*MD

Truong Ngo Tho
Xem chi tiết
Nguyễn Tất Đạt
20 tháng 7 2019 lúc 9:19

A B C O D E S F N M I

a) Bổ đề: Xét tam giác ABC cân tại A, một điểm M bất kì sao cho ^AMB = ^AMC. Khi đó MB = MC.

Bổ đề chứng minh rất đơn giản, không trình bày ở đây.

Áp dụng vào bài toán: Vì E là điểm chính giữa (BC nên EB = EC = ED => \(\Delta\)BED cân tại E

Ta có ^BAE = ^CAE (2 góc nội tiếp chắn hai cung bằng nhau) hay ^BAE = ^DAE

Áp dụng bổ đề vào \(\Delta\)BED ta được AB = AD. Khi đó AE là trung trực của BD => AE vuông góc BD

Lại có \(\Delta\)BAD ~ \(\Delta\)CFD (g.g). Mà AB = AD nên FD =FC. Từ đó EF vuông góc DC

Xét \(\Delta\)AEF có FD vuông góc AE (cmt), AD vuông góc EF (cmt) => D là trực tâm \(\Delta\)AEF (đpcm).

b) Gọi DN cắt EC tại I. Ta dễ thấy ^MDI = ^MDN = ^MBN = ^MBC = ^MEC = ^MEI

Suy ra bốn điểm D,E,M,I cùng thuộc một đường tròn => ^EMD = ^EID = 900

Nếu ta gọi MD cắt cung lớn BC của (O) tại S thì ^EMS chắn nửa (O) hay ES là đường kính của (O)

Mà E là điểm chính giữa cung nhỏ BC nên S là điểm chính giữa cung lớn BC

Do đó S là điểm cố định (Vì B,C cố định). Vậy MD luôn đi qua S cố định (đpcm).

vũ hà sơn
Xem chi tiết
Vũ tân hợi
Xem chi tiết