Cho tam giác ABC cân tại A,đường cao AM,kẻ MD vuông góc với AB,kẻ ME vuông goc với AC CM:AD=AE :3
Cho tam giác ABC vuông tại A, đường cao AH, trung tuyến AM, kẻ MK vuông góc với AC. Kẻ ME vuông góc với AB tại E, AK/AC + AE/AB. Chứng minh AE/AC=AF/AB.
cho tam giác abc cân tại a tia pg am m thuộc bc sao cho mb=mc từ m kẻ md vuông góc với ab me vuông với ac CM tam giác abm = tam giác acm am vuông góc với bc ad =ae góc amd = góc ame
a: Xét ΔABM và ΔACM có
AB=AC
\(\widehat{BAM}=\widehat{CAM}\)
AM chung
Do đó: ΔABM=ΔACM
b: Ta có: ΔABC cân tại A
mà AM là phân giác
nên AM là đường cao
c: Xét ΔAMD vuông tại D và ΔAME vuông tại E có
AM chung
\(\widehat{MAD}=\widehat{MAE}\)
Do đó: ΔAMD=ΔAME
Suy ra: AD=AE
\(Cho tam giác ABC cân có góc BAC=120 độ.Vẽ AM vuông góc BC (M thuộc BC) a,CM:là tia phân giác của goc BAC b,Kẻ MD vuông góc với AB(A thuộc AB),kẻ ME vuông góc với AC(E thuộc AC).CM:tam giác cân và DE song songvới BC c,CM:tam giác MED đều d,Đường vuông góc với BC kẻ từ C cắt tia BA tại F.Tính AF,biết CF=6cm \)
Cho tam giác ABC có AM vuông góc với BC. Kẻ MD vuông góc với AB tại D. Kẻ ME vuông góc với AC tại E. Biết BD = CE, chứng minh tam giác ABC cân.
Cho tam giác ABC vuông tại A có AB<AC. Gọi M Là trung điểm của BC, kẻ MD vuông góc với AB tại D, ME vuông góc với AC tại E
a) Cm AM=DE
b) Cm tứ giác DMCE là hbh
c) Gọi AH là đường cao của tam giác ABC (H thuộc BC). Cm tứ giác DHME là hình thang cân và DE là trung trực của AH
a: Xét tứ giác ADME có
\(\widehat{ADM}=\widehat{AEM}=\widehat{DAE}=90^0\)
=>ADME là hình chữ nhật
=>AM=DE
b: Xét ΔABC có
M là trung điểm của BC
MD//AC
Do đó: D là trung điểm của AB
Xét ΔABC có
M là trung điểm của BC
ME//AB
Do đó: E là trung điểm của AC
Xét ΔABC có
D,E lần lượt là trung điểm của AB,AC
=>DE là đường trung bình
=>DE//BC và DE=1/2BC
=>DE//MC và DE=MC
Xét tứ giác DMCE có
DE//MC
DE=MC
Do đó: DMCE là hình bình hành
c: ΔHAC vuông tại H có HE là trung tuyến
nên \(HE=\dfrac{1}{2}AC\)
mà \(MD=\dfrac{1}{2}AC\)
nên HE=MD
Xét tứ giác DHME có
ED//MH
nên DHME là hình thang
mà HE=MD
nên DHME là hình thang cân
ΔHAB vuông tại H
mà HD là trung tuyến
nên HD=AD
EA=EH
DA=DH
Do đó: ED là đường trung trực của AH
Tam giác ABC cân tại A có AB = AC = 3cm . Kẻ đường trung tuyến AM .
A) Chứng minh rằng AM vuông góc BC
B) Kẻ MD vuông góc AB , ME vuông góc AC , Chứng minh MD=ME
C) Chứng minh tam giác ADE cân , từ đó suy ra DE song song BC
a) Xét ΔAMB vuông tại M và ΔAMC vuông tại M có
AB=AC(ΔABC cân tại A)
AM chung
Do đó: ΔAMB=ΔAMC(cạnh huyền-cạnh góc vuông)
Suy ra: MB=MC(hai cạnh tương ứng)
b) Ta có: ΔAMB=ΔAMC(cmt)
nên \(\widehat{BAM}=\widehat{CAM}\)(hai góc tương ứng)
c) Xét ΔDMB vuông tại D và ΔEMC vuông tại E có
MB=MC(cmt)
\(\widehat{B}=\widehat{C}\)(hai góc ở đáy của ΔABC cân tại A)
Do đó: ΔDMB=ΔEMC(cạnh huyền-góc nhọn)
Suy ra: DM=EM(hai cạnh tương ứng)
Xét ΔMDE có MD=ME(cmt)
nên ΔMDE cân tại M(Định nghĩa tam giác cân)
Cho tam giác ABC cân tại A diểm M thuộc BC .Kẻ MD vuông góc với AB,kẻ ME vuông góc với AC ,kẻ BH vuông góc với AC .CMR:AD+ME=BH
AI GIÚP MÌNH VỚI MAI MÌNH PHẢI NỘP RỒI
cho tam giác ABC cân tại A M thuộc BC kẻ MD vuông góc với AB (D thuộc BC) kẻ MD vuông góc với AB (D thuộc AB ) kẻ ME vuông góc với AC(E thuộc AC) kẻ BH vuông góc với AC(H thuoc AC)