Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Lê Ngọc Bảo Linh
Xem chi tiết
Nguyễn Lê Phước Thịnh
14 tháng 12 2023 lúc 20:44

a: Xét ΔMAD và ΔMCB có

MA=MC

\(\widehat{AMD}=\widehat{CMB}\)(hai góc đối đỉnh)

MD=MB

Do đó: ΔMAD=ΔMCB

=>AD=BC

b: Xét ΔMAB và ΔMCD có

MA=MC

\(\widehat{AMB}=\widehat{CMD}\)(hai góc đối đỉnh)

MB=MD

Do đó: ΔMAB=ΔMCD

=>\(\widehat{MAB}=\widehat{MCD}=90^0\)

=>CD\(\perp\)CA

c: Xét tứ giác ABNC có

AB//NC

AC//BN

Do đó: ABNC là hình bình hành

=>AB=CN

Xét ΔABM vuông tại A và ΔCNM vuông tại C có

AB=CN

AM=CM

Do đó: ΔABM=ΔCNM

Thế Hảo Official
Xem chi tiết
hằng lê
Xem chi tiết
Nguyễn Lê Phước Thịnh
9 tháng 12 2021 lúc 11:45

Đề sai rồi bạn

Nguyễn Danh Phong
Xem chi tiết
Nguyễn Lê Phước Thịnh
17 tháng 12 2022 lúc 22:06

a: Xét ΔABM và ΔCDM có

MA=MC

góc AMB=góc CMD

MB=MD

Do đó: ΔABM=ΔCDM

b: ΔABM=ΔCDM

nên AB=CD và góc ABM=góc CDM

=>AB//CD

=>CE vuông góc với AC

=>AC vuông góc DE

Lâm Phương Thanh
Xem chi tiết
Tiến Phát Nguyễn
Xem chi tiết
Nguyễn Lê Phước Thịnh
5 tháng 3 2023 lúc 12:46

a: Xét tứ giác ABCD có

m là trung điểm chung của AC và BD

=>ABCD là hình bình hành

=>AD//BC

b: ABCD là hình bình hành

=>AB//CD
=>CD vuông góc AC

c: Xét tứ giác ABNC có

AB//NC

AC//BN

=>ABNC là hình bình hành

=>BN=AC; AB=NC

Xét ΔBAM vuông tại A và ΔNCM vuông tại C có

MA=MC

BA=CN

=>ΔBAM=ΔNCM

Phucleee123456
Xem chi tiết
Nguyễn Lê Phước Thịnh
20 tháng 12 2022 lúc 0:01

a: Xét tứ giác ABCD có

M là trung điểm chung của AC và BD

nên ABCD là hình bình hành

=>AB//CD

=>góc ABM=góc CDM

b: Vì ABCD là hình bình hành

nên AB=CD

AB//CD

AB vuông góc với AC

Do đó: CD vuông góc với AC

=>AC vuông góc với DE

c: Xét tứ giác ABEC có

CE//AB

BE//AC

Do đó: ABEC là hình bình hành

=>CE=AB=CD

=>C là trung điểm của ED

Nguyễn Thu Uyên
Xem chi tiết
RÙA NGÁO 2005
Xem chi tiết
RÙA NGÁO 2005
15 tháng 12 2017 lúc 21:36
nhanh giùm với
Huy Hoàng
16 tháng 12 2017 lúc 11:52

(Bạn tự vẽ hình giùm)

a/ \(\Delta ADM\)và \(\Delta CBM\)có: AM = CM (M là trung điểm của AC)

\(\widehat{AMD}=\widehat{BMC}\)(đối đỉnh)

DM = BM (gt)

=> \(\Delta ADM\)\(\Delta CBM\)(c. g. c) => AD = BC (hai cạnh tương ứng)

b/ \(\Delta ABM\)và \(\Delta CDM\)có: AM = CM (M là trung điểm của AC)

\(\widehat{AMB}=\widehat{CMD}\)(đối đỉnh)

BM = DM (gt)

=> \(\Delta ABM\)\(\Delta CDM\)(c. g. c)

=> \(\widehat{BAM}=\widehat{MCD}=90^o\)(hai góc tương ứng)

=> AC _|_ CD (đpcm)