Chứng minh:
a) \(x^2-4xy+4y^2+3>0\)với mọi số thực x và y
b) \(3x-x^2-3<0\)với mọi số thực x
Chứng minh:
a)x^2+y^2–2x+4y+6>0 với mọi x,y
b)2x^2+2x+3>0 với mọi x
c)x^2+y^2+z^2 ≥ xy+yz+xz với mọi x,y,z
a) \(x^2+y^2-2x+4y+6=\left(x^2-2x+1\right)+\left(y^2+4y+4\right)+1\)
\(=\left(x-1\right)^2+\left(y+2\right)^2+1\ge1>0\forall x,y\)
b) \(2x^2+2x+3=2\left(x^2+x+\dfrac{1}{4}\right)+\dfrac{5}{2}\)
\(=2\left(x+\dfrac{1}{2}\right)^2+\dfrac{5}{2}\ge\dfrac{5}{2}>0\forall x\)
c) \(x^2+y^2+z^2\ge xy+yz+xz\)
\(\Leftrightarrow2x^2+2y^2+2z^2\ge2xy+2yz+2xz\)
\(\Leftrightarrow\left(x^2-2xy+y^2\right)+\left(y^2+2yz+z^2\right)+\left(x^2+2xz+z^2\right)\ge0\)
\(\Leftrightarrow\left(x-y\right)^2+\left(y-z\right)^2+\left(x-z\right)^2\ge0\left(đúng\right)\)
\(ĐTXR\Leftrightarrow x=y=z\)
chứng minh
a. x2-4xy-4y2+3>0 với mọi số thực x và y
b. 2x-2x2-1<0 với mọi số thực x
a)\(x^2-4xy+4y^2+3\)
\(=\left(x-2y\right)^2+3\)
Do \(\left(x-2y\right)^2\ge0\forall x,y\)
\(\left(x-2y\right)^2+3\ge0+3\forall x,y\)
\(\left(x-2y\right)^2+3>0\forall x,y\)
=> Đpcm
b)\(2x-2x^2-1\)
\(=-x^2-x^2+2x-1\)
\(=-x^2-\left(x-1\right)^2\)
\(=-\left[x^2+\left(x-y\right)^2\right]< 0\)
=> đpcm
Làm nảy giờ, mình thấy toàn mấy bài trong phân ôn tập chương I. Đừng đăng tất cả các bạn tập, bạn suy nghĩ khi nào ko được bí quá hả đăng hỏi nha bạn! Nếu có gì ko hiểu hỏi, mình giải thích cho. Bài này mình cũng được thầy giảng rồi.
Chúc bạn học tốt!^^
sai đề câu a ko bạn ? 2 dấu trừ đằng sau thì làm sao ra đc HĐT
Chứng minh rằng:
a, x^2-4x>-5 với mọi số thực x
b, Chứng minh 2x^2+4y^2-4x-4xy+5>0 với mọi số thực x;y
a) Xét \(x^2-4x+4=\left(x-2\right)^2\ge0\)
<=> \(x^2-4x\ge-4>-5\)
b) \(2x^2+4y^2-4x-4xy+5\)
= \(\left(x^2-4x+4\right)+\left(x^2-4xy+4y^2\right)+1\)
= \(\left(x-2\right)^2+\left(x-2y\right)^2+1\ge1>0\)
a) x^2-4xy+4y^2+3>0 với mọi số thực của x và y
b) 2x-2x^2-1 <0 với mọi số thực của x
a)A= x2-4xy+4y2+3 (x;y\(\in R\) )
A=(x2-4xy+4y2)+3
A=(x-2y)2+3
do (x-2y)2\(\ge0\forall x\);y
=>(x-2y)2+3\(\ge3\)
=> A \(\ge3\)
vậy A >0 với mọi x;y\(\in R\)
a)
a)
x2 - 4xy + 4y2 + 3
= x2 - 2.x.2y + (2y)2 + 3
= (x - 2y)2 + 3
Vì (x - 2y)2 \(\ge\) 0 với mọi x, y
\(\Rightarrow\) (x - 2y)2 + 3 > 0 với mọi x, y
a) x2 - 4xy + 4y2 + 3
= (x - 2y)2 + 3 > 0 với mọi x,y
Vì: \(\left\{\begin{matrix} (x - 2y)^{2} \geq 0 & & \\ 3 > 0 & & \end{matrix}\right.\) (chỗ (x - 2y)2 \(\geq \) 0 pn ghi thêm với mọi x nha)
Vậy: x2 - 4xy + 4y2 + 3 > 0 với mọi của x,y
b) 2x - 2x2 - 1
= - (2x2 - 2x + 1)
= - (x2 - 2x + 1 + x2)
= - \(\left [ (x - 1)^{2} + x^{2} \right ]\)
= - (x - 1)2 - x2 < 0 với mọi x
Vì: \(\left\{\begin{matrix} -(x - 1)^{2}< 0 & & \\ - x^{2}< 0 & & \end{matrix}\right.\)
(pn cũng ghi thêm với mọi x nha)
Vậy: 2x - 2x2 - 1 < 0 với mọi x
CM: a,x^2-4xy-4y^2 +3>0 với mọi số thực x và y
A=,x2-4xy-4y2 +3
= (x-2y)2+3
do ( x-2y)2\(\ge0\forall x;y\)
=> (x-2y)2+3\(\ge3\)
=> A\(\ge3\)
vậy A \(>0\) với mọi số thực x;y
Bổ sung câu trả lời của bạn kuroba kaito
Khi và chỉ khi x - 2y =0
x =2y
Ta có: x2 - 4xy + 4y2 +3 > 0 với \(\forall\) x,y
\(\Leftrightarrow\) (x2 - 4xy + 4y2) + 3 > 0 với \(\forall\) x,y
\(\Leftrightarrow\) (x - y)2 +3 > 0 với \(\forall\) x,y
Ta thấy: (x - y)2 \(\ge\) 0 với \(\forall\) x,y
3 > 0
\(\Rightarrow\) (x - y)2 + 3 > 0 với \(\forall\) x,y
\(\Rightarrow\) x2 - 4xy + 4x2 + 3 > 0 với \(\forall\) x,y
Chứng minh rằng: 2x2+4y2+4xy-6x+10 >0 Với mọi số thực x và y
Ta có: \(2x^2+4y^2+4xy-6x+10\)\(=x^2+4xy+4y^2+x^2-6x+9+1\)\(=\left(x+2y\right)^2+\left(x-3\right)^2+1\)
Vì \(\left(x+2y\right)^2\ge0;\left(x-3\right)^2\ge0\)\(\Rightarrow\left(x+2y\right)^2+\left(x-3\right)^2\ge0\)\(\Leftrightarrow\left(x+2y\right)^2+\left(x-3\right)^2+1\ge1>0\)\(2x^2+4y^2+4xy-6x+10>0\left(đpcm\right)\)
Chứng minh rằng:
a,x^2-6xy+9y+1>0 với mọi số thực x và y
b,-25x^2+5x-1<0 với mọi số thực x
\(a,x^2-6xy+9y^2+1=\left(x-3y\right)^2+1\ge1>0\\ b,-25x^2+5x-1=-\left(25x^2+2\cdot5\cdot\dfrac{1}{2}x+\dfrac{1}{4}\right)-\dfrac{3}{4}=-\left(5x+\dfrac{1}{2}\right)^2-\dfrac{3}{4}\le-\dfrac{3}{4}< 0\)
Mọi người giải nhanh bài này giúp mình với, mình sắp phải nộp bài rồi😓
Thực hiện phép tính sau:
1. \(\dfrac{2x+6}{3x^2-x}:\dfrac{x^2+3x}{1-3x}\)
2. \(\dfrac{x}{x-2y}+\dfrac{x}{x+2y}+\dfrac{4xy}{4y^2-x^2}\)
3. \(\dfrac{1}{3x-2}-\dfrac{1}{3x+2}-\dfrac{3x-6}{4-9x^2}\)
4.\(\dfrac{x+3}{x+1}+\dfrac{2x-1}{x-1}+\dfrac{x+5}{x^2-1}\)
7. Chứng minh:
\(a\)) \(x^2-4xy+4y^2+3>0\) với mọi số thực x và y;
\(b\)) \(2x-2x^2-1< 0\) với mọi số thực x.
8. Tìm các giá trị nguyên của n để \(10n^3-23n^2+14n-5\) chia hết cho \(2n-3\)
x2−4xy+4y2+3
=(x−2y)2+3
Do (x−2y)2≥0∀x,y
(x−2y)2+3≥0+3∀x,y
(x−2y)2+3>0∀x,y
=> Đpcm
b)2x−2x2−1
=−x2−x2+2x−1
=−x2−(x−1)2
=−[x2+(x−y)2]<0
=> đpcm
Chúc bn học tốt
8: \(10n^3-23n^2+14n-5⋮2n-3\)
\(\Leftrightarrow10n^3-15n^2-8n^2+12n+2n-3-2⋮2n-3\)
=>\(2n-3\in\left\{1;-1;2;-2\right\}\)
hay \(n\in\left\{2;1;\dfrac{5}{2};\dfrac{1}{2}\right\}\)