Tìm x biết : \(\frac{x-ab}{a+b}+\frac{x-ac}{a+c}+\frac{x-bc}{b+c}=a+b+c\) với \(a\ne-b;b\ne-c;c\ne-a\)
Tìm x: \(\frac{x-ab}{a+b}+\frac{x-ac}{a+c}+\frac{x-bc}{b+c}=a+b+c\) với \(a\ne-b;b\ne-c;c\ne-a\)
\(\frac{x-ab}{a+b}+\frac{x-ac}{a+c}+\frac{x-bc}{b+c}=a+b+c\)
\(\frac{x-ab}{a+b}-c+\frac{x-ac}{a+c}-b+\frac{x-bc}{b+c}-a=0\)
\(\frac{x-ab-ac-bc}{a+b}+\frac{x-ac-ba-bc}{a+c}+\frac{x-bc-ab-ac}{b+c}=0\)
\(\left(x-ab-ac-bc\right)\left(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{a+c}\right)=0\)
\(x-ab-ac-bc=0\)
\(x=ab+ac+bc\)
Tìm x biết :
a, \(\left|x^2+\left|x-1\right|\right|=x^2+2\)
b, \(\frac{x-ab}{a+b}+\frac{x-ac}{a+c}+\frac{x-bc}{b+c}=a+b+c\) với \(a\ne-b;b\ne-c;c\ne-a\)
Giải các phương trình sau:
\(\frac{x-a}{bc}+\frac{x-b}{ac}+\frac{x-c}{ab}=\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)với x là ẩn và abc(ab+bc+ca)≠0
Tìm x biết: \(\frac{a+b-x}{c}+\frac{b+c-x}{a}+\frac{c+a-x}{b}+\frac{4x}{a+b+c}=1\)
(a, b, c \(\ne\) 0, a+b+c\(\ne\)0)
\(\Rightarrow\)\(\frac{a+b-x}{c}+\frac{b+c-x}{a}+\frac{c+a-x}{b}=1-\frac{4x}{a+b+c}\)
\(\Leftrightarrow\)\(\frac{a+b+c-x}{c}+\frac{b+c+a-x}{a}+\frac{c+a+b-x}{b}=4-\frac{4x}{a+b+c}\)(Vế trái cộng mỗi phân số với 1 thì vế phải +3)
\(\Leftrightarrow\)\(\left(a+b+c-x\right)\left(\frac{1}{c}+\frac{1}{b}+\frac{1}{a}\right)=4\left(a+b+c-x\right).\frac{1}{a+b+c}\)
+ Xét \(a+b+c-x=0\Rightarrow x=a+b+c\)
+ Xét \(a+b+c-x\)khác 0 \(\Rightarrow\)\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=4\left(\frac{1}{a+b+c}\right)\)
Ta có : \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{\left(1+1+1\right)^2}{a+b+c}=\frac{9}{a+b+c}>4\left(\frac{1}{a+b+c}\right)\)(bất đẳng thức COSY đó bạn)
như vậy là phương trình vô nghiệm
Sai rồi nha bạn Nguyễn Thuỳ Trang.
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{4}{a+b+c}\) vẫn được mà.
Đề có cho \(a,b,c\) dương đầu mà dùng Cauchy như đúng rồi vậy! Cẩn thận một chút.
câu 1 :
tìm giá trị lớn nhất của đẳng thức: A= I x-2018I - Ix-2017I
câu 2:
cho \(\frac{1}{c}=\frac{1}{2}.\left(\frac{1}{a}+\frac{1}{b}\right)\)( với \(\text{a,b,c }\ne0;b\ne c\)) chứng minh \(\frac{a}{b}=\frac{a-c}{c-b}\)
câu 3:
a) cho tỉ lệ thức \(\frac{ab}{bc}=\frac{b}{c}\)với \(c\ne0\). chứng minh ac=b2
b)tìm các số thực x,y,z biết\(\frac{x +y-3}{z}=\frac{y+z+1}{x}=\frac{x+z+2}{y}=\frac{1}{x+y+z}\)
câu 4 :
tìm các giá trị của x, y thỏa mãn: I2x-27I2011+(3y+10)2012=0
1.cho x+y+z=xyz và xy+yz+zx≠3
cmr: x(y^2+z^2)+y(x^2+z^2)+z(x^2+y^2)/xy+yz+zx=xyz
2.cmr nếu c^2+2(ab-ac-bc)=0và b≠c,a+b≠c thì \(\frac{a^2+\left(a-c\right)^2}{b^2+\left(b-c\right)^2}=\frac{a-c}{b-c}\)
3. cho a,b,c thỏa mãn abc≠0 và ab+bc+ca=0
tính :P=\(\frac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc}\)
1.cho x+y+z=xyz và xy+yz+zx≠3
cmr: x(y^2+z^2)+y(x^2+z^2)+z(x^2+y^2)/xy+yz+zx=xyz
2.cmr nếu c^2+2(ab-ac-bc)=0và b≠c,a+b≠c thì \(\frac{a^2+\left(a-c\right)^2}{b^2+\left(b-c\right)^2}=\frac{a-c}{b-c}\)
3. cho a,b,c thỏa mãn abc≠0 và ab+bc+ca=0
tính :P=\(\frac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc}\)
Em(mình) thử nhé, ko chắc đâu
3/ Ta có \(\left(a+b\right)\left(b+c\right)\left(c+a\right)=ab\left(a+b\right)+bc\left(b+c\right)+ca\left(c+a\right)+2abc\)
\(=\left[ab\left(a+b\right)+abc\right]+\left[bc\left(b+c\right)+abc\right]+\left[ca\left(c+a\right)+ca\right]-abc\)
\(=\left(a+b+c\right)ab+\left(a+b+c\right)bc+\left(a+b+c\right)ca-abc\)
\(=\left(a+b+c\right)\left(ab+bc+ca\right)-abc\)= -abc
Suy ra \(P=\frac{-abc}{abc}=-1\)
Vậy..
Bài 1 : a) Tìm số nguyên x ; y sao cho x - 2xy + y = 0
b) Tìm a ; b ; c thuộc Z biết : ab = c ; bc = 4a ; ac = 9b
c) Cho \(\frac{a}{b}=\frac{c}{d}\)Chứng minh rằng : \(\frac{a^2+ac}{c^2-ac}=\frac{b^2+bd}{d^2-bd}\)