Xác định \(lim_{x\rightarrow0}\frac{\left|x\right|}{x^2}\)
Cho \(f\left(x\right)\) xác định trên khoảng nào đó chứa điểm 0 và \(\left|f\left(x\right)\right|\le\left|x\right|\) . Khi đó ta có:
A, \(lim_{x\rightarrow0}f\left(x\right)=0\) B, \(lim_{x\rightarrow0}f\left(x\right)=1\) C, \(lim_{x\rightarrow0}f\left(x\right)=-1\) D, Hàm số không có giới hạn tại không.
Đáp án A
Đó là nguyên lý của giới hạn kẹp
\(\left|f\left(x\right)\right|\le\left|x\right|\Rightarrow\lim\limits_{x\rightarrow0}f\left(x\right)=\lim\limits_{x\rightarrow0}x=0\)
Tìm các giới hạn sau:
a) \(lim_{x\rightarrow0}\dfrac{tan3x}{sin5x}\)
b) \(lim_{x\rightarrow0}\dfrac{cos2x-1}{sin^23x}\)
c) \(lim_{x\rightarrow1}\dfrac{x^2-4x+3}{sin\left(x-1\right)}\)
\(D=lim_{x\rightarrow0}\frac{\left(1+2x\right)^2\left(1+3x\right)^3-1}{x}\)
\(lim_{x\rightarrow0}\frac{\left(1+3x\right)^3+\left(1-4x\right)^4}{x}\)
\(lim_{x\rightarrow0}\left(\dfrac{1}{x}-\dfrac{1}{x^2}\right)\)
\(\lim\limits_{x\rightarrow0}\left(\dfrac{1}{x}-\dfrac{1}{x^2}\right)\)
\(=\lim\limits_{x\rightarrow0}\dfrac{x-1}{x^2}\)
\(=-\infty\) vì \(\left\{{}\begin{matrix}\lim\limits_{x\rightarrow0}x-1=0-1=-1< 0\\\lim\limits_{x\rightarrow0}x^2=0^2=0\end{matrix}\right.\)
\(\lim_{x\rightarrow0}\frac{\left|x\right|}{x}\)
giúp vs nhé
Tính giới hạn L=\(lim_{x\rightarrow0}\frac{\left(1+x\right)^n-1}{x}\).Với n là số nguyên dương
\(lim_{x\rightarrow0+}\frac{\left(1+x\right)^n-1}{x}\)
\(=lim_{x\rightarrow0+}\frac{\left(1+x\right)^n-1^n}{x}\)
\(=lim_{x\rightarrow0+}\frac{\left(1+x-1\right)\left[\left(1+x\right)^{n-1}+\left(1+x\right)^{n-2}+...+\left(1+x\right)^0\right]}{x}\)
\(=lim_{x\rightarrow0}\left[\left(1+x\right)^{n-1}+\left(1+x\right)^{n-2}+...\left(1+x\right)^0\right]\)
\(=1^{n-1}+1^{n-2}+...+1^0\)
Số số hạng
\(\left(n-1-0\right):1+1=n\)
Do mọi số hạng đều bằng 1 nên tổng là
\(1\cdot n=n\)
Tính giới hạn
a, \(Lim_{n->+\infty}\frac{1+sin\left(n\right)+2^{n+2}}{2-2n+2^n}\)
b,\(Lim_{x->0}\frac{e^x-1-xcos\left(x\right)}{x\left(e^{2x}-1\right)}\)
c,\(Lim_{n->+\infty}\sqrt[2n]{8^n+9^n}\)
d,\(Lim_{x->0}\frac{\ln\left(1+x\right)-xe^3}{x\tan\left(2x\right)}\)
Tính giới hạn
a, \(Lim_{n->+\infty}\frac{1+sin\left(n\right)+2^{n+2}}{2-2n+2^n}\)
b,\(Lim_{x->0}\frac{e^x-1-xcos\left(x\right)}{x\left(e^{2x}-1\right)}\)
c,\(Lim_{n->+\infty}\sqrt[2n]{8^n+9^n}\)
d,\(Lim_{x->0}\frac{\ln\left(1+x\right)-xe^3}{x\tan\left(2x\right)}\)