Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Minh Đức
Xem chi tiết
Nguyễn Việt Lâm
25 tháng 2 2020 lúc 17:03

Đáp án A

Đó là nguyên lý của giới hạn kẹp

\(\left|f\left(x\right)\right|\le\left|x\right|\Rightarrow\lim\limits_{x\rightarrow0}f\left(x\right)=\lim\limits_{x\rightarrow0}x=0\)

Khách vãng lai đã xóa
Scarlett
Xem chi tiết
giang nguyen
Xem chi tiết
lê thanh thưởng
Xem chi tiết
camcon
Xem chi tiết
Nguyễn Lê Phước Thịnh
23 tháng 12 2023 lúc 13:42

\(\lim\limits_{x\rightarrow0}\left(\dfrac{1}{x}-\dfrac{1}{x^2}\right)\)

\(=\lim\limits_{x\rightarrow0}\dfrac{x-1}{x^2}\)

\(=-\infty\) vì \(\left\{{}\begin{matrix}\lim\limits_{x\rightarrow0}x-1=0-1=-1< 0\\\lim\limits_{x\rightarrow0}x^2=0^2=0\end{matrix}\right.\)

Thắng Nguyễn
Xem chi tiết
Minh Triều
13 tháng 3 2016 lúc 7:06

ông lớp mấy mà hỏi toán này

Thắng Nguyễn
13 tháng 3 2016 lúc 7:19

cái này ra -1 nhưng ko biết cách giải

Minh Triều
13 tháng 3 2016 lúc 7:20

ông đừng rinh ở đâu vào mà khoe nữa

Cris devil gamer
Xem chi tiết
Capheny Bản Quyền
24 tháng 5 2021 lúc 20:33

\(lim_{x\rightarrow0+}\frac{\left(1+x\right)^n-1}{x}\)   

\(=lim_{x\rightarrow0+}\frac{\left(1+x\right)^n-1^n}{x}\)   

\(=lim_{x\rightarrow0+}\frac{\left(1+x-1\right)\left[\left(1+x\right)^{n-1}+\left(1+x\right)^{n-2}+...+\left(1+x\right)^0\right]}{x}\)   

\(=lim_{x\rightarrow0}\left[\left(1+x\right)^{n-1}+\left(1+x\right)^{n-2}+...\left(1+x\right)^0\right]\)    

\(=1^{n-1}+1^{n-2}+...+1^0\) 

Số số hạng 

\(\left(n-1-0\right):1+1=n\)   

Do mọi số hạng đều bằng 1 nên tổng là 

\(1\cdot n=n\)

Khách vãng lai đã xóa
Nguyễn Đức
Xem chi tiết
Nguyễn Đức
Xem chi tiết