giải phương trình: (4x-1)2-(3x+2)2=0
Bài 1: Giải phương trình và bất phương trình sau: 1. 5.(2-3x). (x-2) = 3.( 1-3x) 2. 4x^2 + 4x + 1= 0 3. 4x^2 - 9= 0 4. 5x^2 - 10=0 5. x^2 - 3x= -2 6. |x-5| - 3= 0
giải phương trình sau
4x+1-\(\sqrt{3x^2+7x}-2\sqrt{3x-1}\)= 0
ĐKXĐ: \(x\ge\dfrac{1}{3}\)
PT \(\Leftrightarrow2\left(x-\sqrt{3x-1}\right)+\left[\left(2x+1\right)-\sqrt{3x^2+7x}\right]=0\)
\(\Leftrightarrow\dfrac{2\left(x^2-3x+1\right)}{x+\sqrt{3x-1}}+\dfrac{\left(2x+1\right)^2-\left(3x^2+7x\right)}{2x+1+\sqrt{3x^2+7x}}=0\)
\(\Leftrightarrow\left(x^2-3x+1\right)\left[\dfrac{2}{x+\sqrt{3x-1}}+\dfrac{1}{2x+1+\sqrt{3x^2+7x}}\right]=0\)
Cái ngoặc to vô nghiệm, đến đây bạn có thể giải.
Giải phương trình :
1 ) \(x^3+5x^2-11=0\)
2 ) \(x^3-3x^2+4x+11=0\)
( phương trình bậc ba cardano )
Bài 3.giải các phương trình sau bằng cách đưa về phương trình tích.
a) (3x+1)(7x+3)=(5x-7)(3x+1)
b) x^2+10x+25-4x(x+5)=0
c) (4x-5)^2(16x^2-25)=0
d) (4x+3)^2=4(x^2-2x+1)
e) x^2-11x=28=0
f) 3x^3-3x^2-6x=0
Giải phương trình:
\(4x^2+8\sqrt{x-1}=14-3x\)
Giải CHI TIẾT phương trình này bằng phương pháp tạo \(A^2+B^2=0\) hoặc \(A^2-B^2=0\) hộ mình cái ạ!
Đk: \(x\ge1\)
\(\Leftrightarrow4\left(2\sqrt{x-1}-1\right)+\left(4x-5\right)\left(x+2\right)=0\)
\(\Leftrightarrow\dfrac{4\left(4x-5\right)}{2\sqrt{x-1}+1}+\left(4x-5\right)\left(x+2\right)=0\)
\(\Leftrightarrow\left(4x-5\right)\left(\dfrac{4}{2\sqrt{x-1}+1}+x+2\right)=0\)
\(\Leftrightarrow x=\dfrac{5}{4}\)(Dễ thấy ngoặc to lớn hơn 0 với \(x\ge1\))
Muốn giải mấy bài kiểu này thì mình hay đoán nghiệm trước
Việc đoán nghiệm thì có thể dùng kinh nghiệm hoặc bấm máy tính
Ở đây mình đoán được nghiệm là x=5/4 nên ta sẽ cố gắng tạo ra nhân tử dạng
4x-5 hoặc x-(5/4) ở đầy mình chọn nhân tử 4x-5
Trong những phương trình chứa căn thức thì để tạo nhân tử thì cách thường dùng nhất là phép liên hợp
Phép liên hợp là phép kiểu: \(\sqrt{a}-\sqrt{b}=\dfrac{\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)}{\sqrt{a}+\sqrt{b}}=\dfrac{a-b}{\sqrt{a}+\sqrt{b}}\)
Ok, ta biến đổi pt lại để tạo nhân tử 4x-5:
\(\left(8\sqrt{x-1}-4\right)+\left(4x^2+3x-10\right)=0\) (ở đây ta thay x=5/4 vào 8căn(x-1) thì được 4 nên ta sẽ ghép với 4, còn phần còn lại của pt thì gộp lại chung)
\(\dfrac{4\left(2\sqrt{x-1}-1\right)\left(2\sqrt{x-1}+1\right)}{2\sqrt{x-1}+1}+\left(4x-5\right)\left(x+2\right)=0\)(sử dụng phép liên hợp)
\(\Leftrightarrow\dfrac{4\left(4x-5\right)}{2\sqrt{x-1}+1}+\left(4x-5\right)\left(x+2\right)=0\)
\(\Leftrightarrow\left(4x-5\right)\left(\dfrac{4}{2\sqrt{x-1}+1}+x+2\right)=0\)
Ở đây thì với đk x>=1 thì ngoặc to sẽ lớn hơn 0 nên kêt luận x=5/4
Bài 1 giải các phương trình sau bằng cách đưa về phương trình tích
a) (3x+1)(7x+3)=(5x-7)(3x+1)
b) x^2+10x+25-4x(x+5)=0
c) (4x-5)^2-2(16x^2-25)=0
d) (4x+3)^2=4(x^2-2x+1)
e) x^2-11x+28=0
f) 3x^3-3x^2-6x=0
Mọi người giải hộ mình với mình cảm ơn
a, (3x+1)(7x+3)=(5x-7)(3x+1)
<=> (3x+1)(7x+3)-(5x-7)(3x+1)=0
<=> (3x+1)(7x+3-5x+7)=0
<=> (3x+1)(2x+10)=0
<=> 2(3x+1)(x+5)=0
=> 3x+1=0 hoặc x+5=0
=> x= -1/3 hoặc x=-5
Vậy...
a) (3x - 2)(4x + 5) = 0
⇔ 3x - 2 = 0 hoặc 4x + 5 = 0
1) 3x - 2 = 0 ⇔ 3x = 2 ⇔ x = 2/3
2) 4x + 5 = 0 ⇔ 4x = -5 ⇔ x = -5/4
Vậy phương trình có tập nghiệm S = {2/3;−5/4}
b) (2,3x - 6,9)(0,1x + 2) = 0
⇔ 2,3x - 6,9 = 0 hoặc 0,1x + 2 = 0
1) 2,3x - 6,9 = 0 ⇔ 2,3x = 6,9 ⇔ x = 3
2) 0,1x + 2 = 0 ⇔ 0,1x = -2 ⇔ x = -20.
Vậy phương trình có tập hợp nghiệm S = {3;-20}
c) (4x + 2)(x2 + 1) = 0 ⇔ 4x + 2 = 0 hoặc x2 + 1 = 0
1) 4x + 2 = 0 ⇔ 4x = -2 ⇔ x = −1/2
2) x2 + 1 = 0 ⇔ x2 = -1 (vô lí vì x2 ≥ 0)
Vậy phương trình có tập hợp nghiệm S = {−1/2}
d) (2x + 7)(x - 5)(5x + 1) = 0
⇔ 2x + 7 = 0 hoặc x - 5 = 0 hoặc 5x + 1 = 0
1) 2x + 7 = 0 ⇔ 2x = -7 ⇔ x = −7/2
2) x - 5 = 0 ⇔ x = 5
3) 5x + 1 = 0 ⇔ 5x = -1 ⇔ x = −1/5
Vậy phương trình có tập nghiệm là S = {−7/2;5;−1/5}
Phần a,b,c,d,e các bạn kia giải rồi nha anh !
f,Ta có \(3.x^3-3.x^2-6.x=0\)
\(\Leftrightarrow3.x.\left(x+1\right).\left(x-2\right)\)
\(\Leftrightarrow x.\left(x+1\right).\left(x-2\right)=0:3\)(anh không cần phải viết dòng này cũng được ạ )
\(\Leftrightarrow x.\left(x+1\right).\left(x-2\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x-2=0\end{cases}}x+1=0\)( 3 trường hợp nhé anh )
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=2\end{cases}}x=-1\)
Vậy \(x_1=0;x_2=-1;x_3=2\)
STUDY WELL !
Giải các phương trình sau bằng cách đưa về phương trình tích:
a) (3x+1)(7x+3)=(5x-7)(3x+1)
b) x^2+10x+25-4x(x+5)=0
c) (4x-5)^2-2(16x^2-25)=0
d) (4x+3)^2=4(x^2-2x+1)
e) x^2-11x+28=0
f) 3x^3-3x^2-6x=0
a) ( 3.x + 1 ) . ( 7.x + 3 ) = (5.x-7 ) . ( 3.x + 1 )
<=> ( 3.x + 1 ) . ( 7.x + 3 ) - ( 5.x - 7) . ( 3.x + 1 ) = 0
<=> ( 3.x + 1 ) . ( 7.x + 3 - 5.x + 7 ) = 0
<=> ( 3.x + 1 ) . ( 2.x + 10 ) = 0
<=> \(\orbr{\begin{cases}3.x+1=0\\2.x+10=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=\frac{-1}{3}\\x=-5\end{cases}}}\)
Vậy x = { \(\frac{-1}{3};-5\)}
b) x2 + 10.x + 25 - 4.x . ( x + 5 ) = 0
<=> ( x + 5 )2 -4.x . (x + 5 ) = 0
<=> ( x+ 5 ) . ( x + 5 - 4.x ) = 0
<=> ( x + 5 ) . ( 5 - 3.x ) = 0
<=> \(\orbr{\begin{cases}x+5=0\\5-3.x\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-5\\x=\frac{5}{3}\end{cases}}}\)
Vậy x = \(\left\{\frac{5}{3};-5\right\}\)
c) (4.x - 5 )2 - 2. ( 16.x2 -25 ) = 0
<=> ( 4.x-5)2 -2 .( 4.x-5) .( 4.x + 5 ) = 0
<=> ( 4.x -5 )2 - ( 8.x+ 10 ) . ( 4.x -5 ) = 0
<=> ( 4.x -5 ) . ( 4.x-5 - 8.x - 10 ) = 0
<=> ( 4.x - 5 ) . ( -4.x - 15 ) = 0
<=> \(\orbr{\begin{cases}4.x-5=0\\-4.x-15=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=\frac{5}{4}\\x=\frac{-15}{4}\end{cases}}}\)
Vậy x = \(\left\{\frac{5}{4};\frac{-15}{4}\right\}\)
d) ( 4.x + 3 )2 = 4. ( x2 - 2.x + 1 )
<=> 16.x2 + 24.x + 9 - 4.x2 + 8.x - 4 = 0
<=> 12.x2 + 32.x + 5 =0
<=> 12. ( x +\(\frac{1}{8}\) ) . ( x + \(\frac{5}{2}\)) = 0
<=> \(\orbr{\begin{cases}x+\frac{1}{6}=0\\x+\frac{5}{2}=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=\frac{-1}{6}\\x=\frac{-5}{2}\end{cases}}}\)
Vậy x = \(\left\{\frac{-1}{6};\frac{-5}{2}\right\}\)
e) x2 -11.x + 28 = 0
<=> x2 -4.x - 7.x + 28 = 0
<=> ( x - 7 ) . ( x - 4 ) = 0
<=> \(\orbr{\begin{cases}x-7=0\\x-4=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=7\\x=4\end{cases}}}\)
Vậy x = { 4 ; 7 }
f ) 3.x.3 - 3.x2 - 6.x = 0
<=> 3.x. ( x2 -x - 2 ) = 0
<=> 3.x. ( x - 2 ) . ( x + 1 ) = 0
<=> \(\orbr{\begin{cases}x-2=0\\x+1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=2\\x=-1\end{cases}}}\)
\([x=0\) \([x=0\)
( Lưu ý :Lưu ý này không cần ghi vào vở : Chị nối 2 ý đó làm 1 nha cj ! )
Vậy x = { 2 ; -1 ; 0 }
1) Giải các phương trình sau : a) x-3/x=2-x-3/x+3 b) 3x^2-2x-16=0 2) Giải bất phương trình sau: 4x-3/4>3x-5/3-2x-7/12
\(a,\dfrac{x-3}{x}=\dfrac{x-3}{x+3}\)\(\left(đk:x\ne0,-3\right)\)
\(\Leftrightarrow\dfrac{x-3}{x}-\dfrac{x-3}{x+3}=0\)
\(\Leftrightarrow\dfrac{\left(x-3\right)\left(x+3\right)-x\left(x-3\right)}{x\left(x+3\right)}=0\)
\(\Leftrightarrow x^2-9-x^2+3x=0\)
\(\Leftrightarrow3x-9=0\)
\(\Leftrightarrow3x=9\)
\(\Leftrightarrow x=3\left(n\right)\)
Vậy \(S=\left\{3\right\}\)
\(b,\dfrac{4x-3}{4}>\dfrac{3x-5}{3}-\dfrac{2x-7}{12}\)
\(\Leftrightarrow\dfrac{4x-3}{4}-\dfrac{3x-5}{3}+\dfrac{2x-7}{12}>0\)
\(\Leftrightarrow\dfrac{3\left(4x-3\right)-4\left(3x-5\right)+2x-7}{12}>0\)
\(\Leftrightarrow12x-9-12x+20+2x-7>0\)
\(\Leftrightarrow2x+4>0\)
\(\Leftrightarrow2x>-4\)
\(\Leftrightarrow x>-2\)
Giải các phương trình sau:
a) \(x^3-3x^2-4x=0\)
b) \(3x^2-5x-2=0\)
a) \(x^3-3x^2-4x=0\)
\(\Leftrightarrow x\left(x^2-3x-4\right)=0\)
\(\Leftrightarrow x\left(x-4\right)\left(x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x-4=0\\x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=4\\x=-1\end{matrix}\right.\)
Vậy \(S=\left\{0;4;-1\right\}\).
b) \(3x^2-5x-2=0\)
\(\Leftrightarrow3x^2+x-6x-2=0\)
\(\Leftrightarrow x\left(3x+1\right)-2\left(3x+1\right)=0\)
\(\Leftrightarrow\left(3x+1\right)\left(x-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}3x+1=0\\x-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{1}{3}\\x=2\end{matrix}\right.\)
Vậy \(S=\left\{-\dfrac{1}{3};2\right\}\).
Giải phương trình : 4x2 - 4x - 5|2x-1| - 5 = 0
Giải bất phương trình : (2x2 + 3x + 4)2 - (x2 +x +4)2 >0
\(4x^2-4x-5\left|2x-1\right|-5=0\)
\(\Leftrightarrow-5\left|2x-1\right|=5-4x^2+4x\)
\(\Leftrightarrow\left|2x-1\right|=\frac{-4x^2+4x+5}{-5}\)
\(\Leftrightarrow\left|2x-1\right|=\frac{4x\left(x-1\right)}{5}-1\)
TH1 : \(2x-1=\frac{4x\left(x-1\right)}{5}-1\Leftrightarrow2x=\frac{4x\left(x-1\right)}{5}\)
\(\Leftrightarrow10x=4x^2-4x\Leftrightarrow14x-4x^2=0\)
\(\Leftrightarrow-2x\left(2x-7\right)=0\Leftrightarrow x=0;x=\frac{7}{2}\)
TH2 : \(2x-1=-\left(\frac{4x\left(x-1\right)}{5}-1\right)\Leftrightarrow2x-1=-\frac{4x\left(x-2\right)}{5}+1\)
\(\Leftrightarrow2x-2=-\frac{4x\left(x-2\right)}{5}\Leftrightarrow10x-10=-4x^2+8x\)
\(\Leftrightarrow2x-10+4x^2=0\Leftrightarrow2\left(2x^2+x-5\ne0\right)=0\)tự chứng minh
Vậy tập nghiệm của phương trình là S = { 0 ; 7/2 }