cho đường thẳng y=-x+1(d) và điểm M(0,-1) Tìm khoảng cách từ (d) đến M
Cho đường thẳng (d): y = - x + 1
b) Trên mặt phẳng tọa độ Oxy lấy điểm M(0;-1). Tính khoảng cách từ điểm M đến đường thẳng (d).
b) Xét tam giác OMB vuông tại O có:
BM2 = OM2 + OB2 = 1 + 1 = 2 ⇒ BM = √2
Tương tự tam giác OAB vuông tại O có:
B A 2 = O A 2 + O B 2 = 1 + 1 = 2 ⇒ BA = 2
Xét tam giác MAB có:
B M 2 + B A 2 = 2 + 2 = 4 = A M 2
⇒ ΔMAB vuông tại B
Do đó, khoảng cách từ M đến đường thẳng (d) là độ dài đoạn BM = 2
1) Tính khoảng cách từ điểm M đến đường thẳng d, với:
M(3,5); (d): x + y + 1 =0
M(2,3); (d): {x-2t, y = 2 + 3t
M(2,-3); (d): (x - 2)/2 = ( y + 1)/3
2) Viết phưởng trình đường thẳng d song song với đường thẳng △: 2x - y +3 =0 và cách △ một khoảng bằng căn 5
\(1/\)
\(M\left(3;5\right);d:x+y+1=0\)
\(\)Gọi khoảng cách từ M đến d là \(l\)
\(l\left(M;d\right)=\dfrac{\left|x_M+y_M+1\right|}{\sqrt{1^2+1^2}}=\dfrac{\left|3+5+1\right|}{\sqrt{1^2+1^2}}=\dfrac{9\sqrt{2}}{2}\)
\(M\left(2;3\right);d:\left\{{}\begin{matrix}x-2t\\y=2+3t\end{matrix}\right.\)
d qua \(M\left(2;3\right)\) có \(VTCP\overrightarrow{u}=\left(-2;3\right)\Rightarrow VTPT\overrightarrow{n}=\left(3;2\right)\)
\(PTTQ\) của \(\Delta:3\left(x-2\right)+2\left(y-3\right)=0\)
\(\Rightarrow3x-6+2y-6=0\)
\(\Rightarrow3x+2y-12=0\)
Gọi khoảng cách từ M đến d là \(l\)
\(l\left(M;d\right)=\dfrac{\left|3.x_M+2.y_M-12\right|}{\sqrt{3^2+2^2}}=\dfrac{\left|3.2+2.3-12\right|}{\sqrt{3^2+2^2}}=0\)
Cho đường thẳng d: y = (m – 2)x + 3m + 1 (m là tham số)
a. Tìm m biết đường thẳng d đi qua J(1; 3)
b. Với m tìm được hãy tính khoảng cách từ O (0; 0) đến đường thẳng d.
a: Thay x=1 và y=3 vào d, ta được:
\(m-2+3m+1=3\)
\(\Leftrightarrow4m=4\)
hay m=1
cho đường thẳng y=(m-2) x+2 (d) a, CMR: đường thẳng (d) luôn đi qua 1 điểm cố định với mọi m b,tìm già trị của m để khoảng cách từ gốc tọa độ đến đương thẳng (d) =1 c, tìm giá trị của m để khoảng cách từ gốc tọa độ đến đường thẳng m là lớn nhất
\(a,\) Gọi điểm cố định (d) luôn đi qua là \(A\left(x_0;y_0\right)\)
\(\Leftrightarrow y_0=\left(m-2\right)x_0+2\Leftrightarrow mx_0-2x_0+2-y_0=0\\ \Leftrightarrow\left\{{}\begin{matrix}x_0=0\\2-2x_0-y_0=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_0=0\\y_0=2\end{matrix}\right.\Leftrightarrow A\left(0;2\right)\)
Vậy \(A\left(0;2\right)\) là điểm cố định mà (d) lun đi qua
\(b,\) PT giao Ox,Oy: \(y=0\Leftrightarrow x=\dfrac{2}{2-m}\Leftrightarrow B\left(\dfrac{2}{2-m};0\right)\Leftrightarrow OB=\dfrac{2}{\left|m-2\right|}\\ x=0\Leftrightarrow y=2\Leftrightarrow C\left(0;2\right)\Leftrightarrow OC=2\)
Gọi H là chân đường cao từ O đến (d) \(\Leftrightarrow OH=1\)
Áp dụng HTL: \(\dfrac{1}{OH^2}=1=\dfrac{1}{OB^2}+\dfrac{1}{OC^2}=\dfrac{\left(m-2\right)^2}{4}+\dfrac{1}{4}\)
\(\Leftrightarrow m^2-4m+4+1=4\\ \Leftrightarrow m^2-4m+1=0\\ \Leftrightarrow\left[{}\begin{matrix}m=2+\sqrt{3}\\m=2-\sqrt{3}\end{matrix}\right.\)
\(c,\) Áp dụng HTL: \(\dfrac{1}{OH^2}=\dfrac{1}{OC^2}+\dfrac{1}{OB^2}=\dfrac{\left(m-2\right)^2}{4}+\dfrac{1}{4}\)
Đặt \(OH^2=t\)
\(\Leftrightarrow\dfrac{1}{t}=\dfrac{m^2-4m+5}{4}\Leftrightarrow t=\dfrac{4}{\left(m-2\right)^2+1}\le\dfrac{4}{0+1}=4\\ \Leftrightarrow OH\le2\\ OH_{max}=2\Leftrightarrow m=2\)
Cho đường thẳng d : y = (m + 1) x – m + 2 (m là tham số)
a. Tìm điểm I là điểm cố định mà d luôn đi qua với mọi m.
b. Hỏi khoảng cách từ O (0; 0) đến d là bao nhiêu ?
Lời giải:
a. Gọi $I(x_0,y_0)$ là điểm cố định mà $(d)$ luôn đi qua. Ta có:
$y_0=(m+1)x_0-m+2, \forall m$
$m(x_0-1)+(x_0+2-y_0)=0, \forall m$
\(\Leftrightarrow \left\{\begin{matrix} x_0-1=0\\ x_0+2-y_0=0\end{matrix}\right.\Leftrightarrow \Rightarrow \left\{\begin{matrix} x_0=1\\ y_0=3\end{matrix}\right.\)
Vậy $I(1,3)$ là điểm cố định mà $d$ luôn đi qua với mọi $m$
b.
$A(0,a)$ là giao của $(d)$ với trục $Oy$
$B(b,0)$ là giao của $(d)$ với trục $Ox$
Nếu $m=-1$ thì $y=3$
Khi đó, khoảng cách từ $O$ đến $(d)$ là $3$
Nếu $m\neq -1$ thì:
$a=(m+1).0-m+2=-m+2$
$b=\frac{m-2}{m+1}$
Theo hệ thức lượng trong tam giác vuông thì khoảng cách từ $O$ đến $(d)$ là $h$ thì:
$\frac{1}{h^2}=\frac{1}{a^2}+\frac{1}{b^2}$
$=\frac{1}{(m-2)^2}+\frac{(m+1)^2}{(m-2)^2}=\frac{m^2+2m+2}{(m-2)^2}$
$\Rightarrow h=\frac{|m-2|}{\sqrt{m^2+2m+2}}$
Cho đường thẳng d: y=x-5
a) Tìm các điểm M thuộc trục Ox sao cho khoảng cách từ M đến đường thẳng d bằng 2.
b) Tìm các điểm N thuộc trục Oy sao cho khoảng cách từ N đến đường thẳng d bằng 2.
Cho điểm A(2;5;3) và đường thẳng d: x - 1 1 = y - 1 1 = z + 2 1 . Gọi (P) là mặt phẳng chứa đường thẳng d sao cho khoảng cách từ A đến (P) lớn nhất. Khoảng cách từ điểm M(1;2;-1) đến (P) bằng
A. 3 2
B. 11 18
C. 11
D. 11 18 18
Cho đường thẩng (d): 2x+y-1=0 và điểm A(0; -2), B(2; 3).
1) Lập phương trình đường thẳng d1 đi qua A và song song với d.
2) Lập phương trình đường thẳng d2 đi qua B và vuông góc với d. Từ đó tìm tọa độ hình chiếu H của B trên d.
3) Tìm điểm M thuộc trục hoành sao cho khoảng cách từ M đến d bằng \(2√5 \).
4) Tìm điểm N thuộc d sao cho khoảng cách từ N đến A bằng 5.
Câu 1: Tìm tập hợp các điểm cách đều 2 đường thẳng:
Delta3 :3x + 4 y + 6 = 0
Delta4 :5x -10 = 0 ( phân giác góc tạo bởi D3 và D4 )
Câu 2: Cho hai đường thẳng:
Delta : 3x + 2y - 1 = 0 và d : 5x - 3y+2=0
1) Tính khoảng cách từ A(5 ;4) đến đường thẳng Delta
2) Viết phương trình các đường phân giác của góc tạo bởi hai đường thẳng trên.
3) Tìm điểm M thuộc Delta sao cho khoảng cách từ M đến d bằng 5.
4) Tìm điểm N thuộc đường thẳng (D1) : x - 2y = 0 bằng hai lần khoảng cách từ N đến d .
giúp minh với ạ
cho đường thẳng (d):y=(m-3)x+m+2( m là tham số và m≠3_
a.tìm m để đường thẳng d song song với đường thẳng y=3x+1
b.chứng tỏ rằng đường thẳng d luôn đi qua 1 điiểm cố định với mọi m
c. tìm m để khoảng cách từ 0 đến (d) bằng 1
a: Để (d)//y=3x+1 thì \(\left\{{}\begin{matrix}m-3=3\\m+2< >1\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}m=6\\m< >-1\end{matrix}\right.\)
=>m=6
b: (d): y=(m-3)x+m+2
=mx-3x+m+2
=m(x+1)-3x+2
Tọa độ điểm mà (d) luôn đi qua là:
\(\left\{{}\begin{matrix}x+1=0\\y=-3x+2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-1\\y=-3\cdot\left(-1\right)+2=3+2=5\end{matrix}\right.\)
c: y=(m-3)x+m+2
=>(m-3)x-y+m+2=0
Khoảng cách từ O đến (d) là:
\(d\left(O;\left(d\right)\right)=\dfrac{\left|0\left(m-3\right)+0\cdot\left(-1\right)+m+2\right|}{\sqrt{\left(m-3\right)^2+\left(-1\right)^2}}=\dfrac{\left|m+2\right|}{\sqrt{\left(m-3\right)^2+1}}\)
Để d(O;(d))=1 thì \(\dfrac{\left|m+2\right|}{\sqrt{\left(m-3\right)^2+1}}=1\)
=>\(\sqrt{\left(m-3\right)^2+1}=\left|m+2\right|\)
=>\(\sqrt{\left(m-3\right)^2+1}=\sqrt{\left(m+2\right)^2}\)
=>\(\left(m-3\right)^2+1=\left(m+2\right)^2\)
=>\(m^2-6m+9+1=m^2+4m+4\)
=>-6m+10=4m+4
=>-10m=-6
=>\(m=\dfrac{3}{5}\left(nhận\right)\)