Tìm a,b
(a.b)2=(b-1)aab
giúp mik vs mn T_T
tìm a,b
(a.b)2=(b-1)aab
giúp mik vs mn
(a.b)2=(b-1)aab
giúp mik vs mn
(a.b)2=(b-1)aab
giúp mik vs mn
a2.b2=a2b2-aab
aabb-aabb=-aab
0=aab
=> a=0,b thuộc r
b=0,a thuộc r
Tìm giá tri nho nhat cua bt:
a) A= 9x^2+8x-5
b)B= 3x^2-x+1
c)C= 2.(2x+1)^2-2.(x-3)^2+1
d)D= (2x^2+4x+5)^2
e)E= x^4+3x^2+2
Huhu, mn giúp mik vs a
Xíu nx mình đi hoc r T_T
1. Tìm số tự nhiên n để hai số sau nguyên tố cùng nhau
a) n+2 và n+3 b)2n+1 và 9n+4
2. Tìm các số tự nhiên a, b. Biết
a) a+b= 192 và ƯCLN(a, b)= 24
b) a.b= 216 và ƯCLN(a, b)= 6
giúp mik ik mà mn ơiiii mik sẽ tim cho
Bài 1:
a. Gọi d là ƯCLN(n+2, n+3). Khi đó:
$n+2\vdots d; n+3\vdots d$
$\Rightarrow (n+3)-(n+2)\vdots d$
Hay $1\vdots d$
$\Rightarrow d=1$. Vậy $ƯCLN(n+2, n+3)=1$ nên hai số này nguyên tố cùng nhau.
b.
Gọi $d=ƯCLN(2n+1, 9n+4)$
$\Rightarrow 2n+1\vdots d; 9n+4\vdots d$
$\Rightarrow 9(2n+1)-2(9n+4)\vdots d$
Hay $1\vdots d$
$\Rightarrow d=1$. Vậy $ƯCLN(2n+1, 9n+4)=1$ nên hai số này nguyên tố cùng nhau.
Bài 2:
a. Vì ƯCLN(a,b)=24 nên đặt $a=24x, b=24y$ với $x,y$ là 2 số nguyên tố cùng nhau.
Khi đó: $a+b=24x+24y=192$
$\Rightarrow 24(x+y)=192$
$\Rightarrow x+y=8$
Vì $(x,y)$ nguyên tố cùng nhau nên $(x,y)=(1,7), (3,5), (5,3), (1,7)$
$\Rightarrow (a,b)=(24,168), (72, 120), (120,72), (168,24)$
Bài 2:
b. Vì ƯCLN(a,b)=6 nên đặt $a=6x, b=6y$ với $x,y$ là hai số nguyên tố cùng nhau.
Khi đó:
$ab=6x.6y=216$
$\Rightarrow xy=6$. Vì $x,y$ nguyên tố cùng nhau nên $(x,y)=(1,6), (2,3), (3,2), (6,1)$
$\Rightarrow (a,b)=(6,36), (12, 18), (18,12), (36,6)$
1. Tìm số tự nhiên n để hai số sau nguyên tố cùng nhau
a) n+2 và n+3 b)2n+1 và 9n+4
2. Tìm các số tự nhiên a, b. Biết
a) a+b= 192 và ƯCLN(a, b)= 24
b) a.b= 216 và ƯCLN(a, b)= 6
giúp mik ik mà mn ơiiii mik sẽ tim cho
Tìm cặp (a,b) nguyên sao cho a.b lớn nhất thỏa mãn ( a+ 1 ) . ( b + 2 ) = 3
Giúp mừn câu nầy vs mik đg gặp trên Vilympic lp 6 !
Gúp mừn câu nầy vs mn ơi!
Tìm cặp (a,b) nguyên sao cko a.b nguyên lớn nhất thỏa mãn : ( a + 1 ) . ( b + 2 ) = 3 ?
Ai tl nhanh nhất mừn tik cko nha !
\(\Rightarrow3⋮\left(a+1\right)\)
\(\Rightarrow a+1\inƯ\left(3\right)=\left\{1;-1;3;-3\right\}\)
Ta có bảng sau
a+1 1 -1 3 -3
a 0 -2 2 -4
b+2 3 -3 1 -1
b 1 -5 -1 -3
Mà \(a;b\in Z\)
Vậy các cặp (a;b) là (0;1),(-2;-5),(2;-1),(-4;-3)
Bn tl sai r đó ! Mik vừa tl Violympic xong ! Kq = a = -4 ; b = -3
Chứng minh BĐT:
a) Nếu x+y>1 thì x^2 +y^2 >1/2
b) Nếu a.b>0 thì a/b+b/a>= 2
Giups mik vs ạ
a.
Vơi mọi x, y ta luôn có:
\(\left(x-y\right)^2\ge0\Leftrightarrow x^2+y^2\ge2xy\) (1)
\(\Leftrightarrow2\left(x^2+y^2\right)\ge x^2+y^2+2xy\)
\(\Leftrightarrow x^2+y^2\ge\dfrac{1}{2}\left(x+y\right)^2>\dfrac{1}{2}.1=\dfrac{1}{2}\) (đpcm)
b.
Sử dụng kết quả (1), ta có:
\(\dfrac{a}{b}+\dfrac{b}{a}=\dfrac{a^2+b^2}{ab}\ge\dfrac{2ab}{ab}=2\) (đpcm)