tính
a) 1+2+3+...+100
b) 1+3+5+7+..+99
c) 1.2+2.3+3.4+...+99.100
help me
1.Tính
A=\(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+.....+\dfrac{1}{99.100}\)
B=\(\dfrac{3}{5.6}+\dfrac{3}{6.7}+\dfrac{3}{7.8}+.....+\dfrac{3}{101.102}\)
C=\(\dfrac{1}{1.2.3}+\dfrac{1}{3.4.5}+\dfrac{1}{5.6.7}\)
D=\(\dfrac{2}{1.3}+\dfrac{2}{3.5}+\dfrac{2}{5.7}+\dfrac{2}{7.9}\)
A=1-1/2+1/2-1/3+1/3-1/4+...+1/99-1/100
A=1-1/100 A=99/100 B= (1/5.6+1/6/7+...+1/101.102).3 B=(1/5-1/6+1/6-1/7+...+1/101-1/102).3 B=(1/5-1/102).3 B=97/170
1) Tính
a) Ta có: \(A=\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+...+\dfrac{1}{99\cdot100}\)
\(=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{99}-\dfrac{1}{100}\)
\(=1-\dfrac{1}{100}=\dfrac{99}{100}\)
2/2.3 + 2/3.4 +...+ 2/99.100
help :C
\(\dfrac{2}{2\cdot3}+\dfrac{2}{3\cdot4}+...+\dfrac{2}{99\cdot100}\)
\(=\)\(\dfrac{1\cdot2}{2\cdot3}+\dfrac{1\cdot2}{3\cdot4}+...+\dfrac{1\cdot2}{99\cdot100}\)
\(=\)\(2\cdot\left(\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+...+\dfrac{1}{99\cdot100}\right)\)
\(=\)\(2\cdot\left(\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{99}+\dfrac{1}{99}-\dfrac{1}{100}\right)\)
\(=\)\(2\cdot\left(\dfrac{1}{2}-\dfrac{1}{100}\right)\)
\(=\)\(2\cdot\dfrac{49}{100}\)
\(=\)\(\dfrac{49}{50}\)
= 1/1 - 1/3 + 1/3 - 1/4 + ... + 1/99 - 1/100
= 1/1 - 1/100
= 99/100
CMR: A=3/(1.2)^2+5/(2.3)^2+7/(3.4)^2+...+4033/(2016.2017)^2<1
\(A=\dfrac{3}{\left(1.2\right)^2}+\dfrac{5}{\left(2.3\right)^2}+...+\dfrac{4033}{\left(2016.2017\right)^2}\)
\(=\dfrac{3}{1.2^2}+\dfrac{5}{2^2.3^2}+...+\dfrac{4033}{2016^2.2017^2}\)
\(=\dfrac{1}{1}-\dfrac{1}{2^2}+\dfrac{1}{2^2}-\dfrac{1}{3^2}+...+\dfrac{1}{2016^2}-\dfrac{1}{2017^2}\)
\(=1-\dfrac{1}{2017^2}< 1\)
\(\Rightarrow A< 1\left(đpcm\right)\)
Vậy...
c) Đặt \(A=1\cdot2+2\cdot3+3\cdot4+...+99\cdot100\)
Ta có: \(A=1\cdot2+2\cdot3+3\cdot4+...+99\cdot100\)
\(\Leftrightarrow3A=3\cdot\left(1\cdot2+2\cdot3+3\cdot4+...+99\cdot100\right)\)
\(\Leftrightarrow3A=1\cdot2\cdot3+2\cdot3\cdot\left(4-1\right)+3\cdot4\cdot\left(5-2\right)+...+99\cdot100\cdot\left(101-98\right)\)
\(\Leftrightarrow3\cdot A=1\cdot2\cdot3-1\cdot2\cdot3+2\cdot3\cdot4-2\cdot3\cdot4+...+98\cdot99\cdot100-98\cdot99\cdot100+99\cdot100\cdot101\)
\(\Leftrightarrow3\cdot A=99\cdot100\cdot101\)
\(\Leftrightarrow A=33\cdot100\cdot101=333300\)
b) Ta có: \(1+2-3-4+...+97+98-99-100\)
\(=\left(1+2-3-4\right)+\left(5+6-7-8\right)+...+\left(97+98-99-100\right)\)
\(=\left(-4\right)+\left(-4\right)+...+\left(-4\right)\)
\(=-4\cdot25=-100\)
Rút gọn biểu thức sau A=(3/1.2)^2+(5/2.3)^2+(7/3.4)^2+...+(2n+1/n^2+1)^2
tính tổng
S=1.2+2.3+3.4+.....+99.100
P=1+3+5+7+...+2015
T=1+2-3-4+5+6-7-8+...+97+98-99-100
S = 1.2 + 2.3 + 3.4 +...+99.100
3S = 1.2.3 + 2.3.(4 - 1) + 3.4(5 - 2) +...+ 99.100(101 - 98)
3S = 1.2.3 + 2.3.4 - 1.2.3 + 3.4.5 - 2.3.4 +...+ 99.100.101 - 98.99.100
3S = 99.100.101
3S = 999900
S = 333300
P = 1 + 3 + 5 + 7 +...+ 2015
P = (2015 + 1)1008 : 2
P = 1016064
T = 1 + 2 - 3 - 4 + 5 + 6 - 7 - 8 +...+ 97 + 98 - 99 - 100
T = (1 + 2 - 3 - 4) + (5 + 6 - 7 - 8) +...+ (97 + 98 - 99 - 100)
T = (-4) + (-4) +...+ (-4)
T = (-4)25
T = -100
Tính tổng :
a ,1+2+3+..........+2015
b, 3+5+7+......+2015
c,1.2+2.3+3.4+......+2015.2016
Tính tổng :
a ,1+2+3+..........+2015
SSH của tổng trên là :
(2015-1):1+1=2015(SH)
Tổng trên là:
(2015:2)x(2015+1)=2031120
b, 3+5+7+......+2015
SSH của tổng trên là :
(2015-3):2+1=1007(SH)
Tổng trên là:
(1007:2)x(2015+3)=1016063
LƯU ý: SSH=số số hạng nha
a 2029106
b508032
c1679780.53381924
tick đúng cho mk nha
a)1+2+3+...........+2015 = 2031120
b)3+5+7+...........+2015 = 1016063
c)1,2+2,3+3,4+...........2015,2016 =20294103,83
A=10+13+.......+79+81
B=1/1.2+1/2.3+1/3.4+.......1/12.20
C=3/7x4/13+3/7+5 4/7
Phần A sai nha phải là: 10 + 13 + ... + 79 + 82
đáp án:
SSH: A = ( 82 - 10 ) : 3 + 1 = 25
Tổng: ( 10 + 82 ) . 25 : 2 = 1150
a) A = 10+13 + ...+79 + 81
A = ( 79+10) x 24 : 2 + 81
A = 89 x 24 : 2 +81
A = 1068+ 81
A= 1149
b) chỗ " 1/12.20" phải là 1/12.13 chứ !
\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{12.13}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{12}-\frac{1}{13}\)
\(=1-\frac{1}{13}\)
\(=\frac{12}{13}\)
c) \(C=\frac{3}{7}\times\frac{4}{13}+\frac{3}{7}+5\frac{4}{7}\)
\(C=\frac{3}{7}\times\left(\frac{4}{13}+1\right)+\frac{39}{7}\)
\(C=\frac{3}{7}\times\frac{17}{13}+\frac{39}{7}\)
\(C=\frac{51}{91}+\frac{39}{7}\)
\(C=\frac{558}{91}\)
3. 1/1.2 - 5.1/2.3 + 7. 1/3.4 - ... + 15 . 1/7.8