Giải giúp mình phương trình này với ạ
X2 -- X = 6
Giải phương trình này giúp mình với ạ, mình cảm ơn nhiều:
x2 + √(x2 + 20) = 22
`x^2+\sqrt{x^2+20}=22`
`<=>x^2+20+\sqrt{x^2+20}-42=0`
Đặt `\sqrt{x^2+20}=t` `(t > 0)` khi đó ta có ptr:
`t^2+t-42=0`
`<=>t^2+7t-6t-42=0`
`<=>t(t+7)-6(t+7)=0`
`<=>(t+7)(t-6)=0`
`<=>` $\left[\begin{matrix} t=-7\text{ (ko t/m)}\\ t=6\text{ (t/m)}\end{matrix}\right.$
`@ t=6=>\sqrt{x^2+20}=6`
`<=>x^2+20=36`
`<=>x^2=16`
`<=>x=+-4`
Vậy `S={+-4}`
Để giải phương trình \(x^2 + \sqrt{x^2 + 20} = 22\), bạn có thể làm theo các bước sau:
1. Trừ 22 từ cả hai bên của phương trình để đưa các thuật ngữ chứa x về cùng một bên:
\(x^2 + \sqrt{x^2 + 20} - 22 = 0\)
2. Bây giờ, chúng ta có một phương trình bậc hai dạng căn bậc hai. Để giải phương trình này, ta sẽ giải quyết từng phần:
\(x^2 + \sqrt{x^2 + 20} = 22\)
3. Bây giờ, ta sẽ loại bỏ căn bậc hai bằng cách đưa nó về phía bên kia của phương trình:
\(x^2 = 22 - \sqrt{x^2 + 20}\)
4. Bình phương cả hai phía của phương trình:
\(x^4 = (22 - \sqrt{x^2 + 20})^2\)
5. Giải phương trình bậc bốn này:
\(x^4 = (22 - \sqrt{x^2 + 20})^2\)
\(x^4 = 484 - 44\sqrt{x^2 + 20} + (x^2 + 20)\)
6. Đưa các thuật ngữ chứa \(x^2\) về cùng một bên:
\(x^4 - x^2 - 464 = - 44\sqrt{x^2 + 20}\)
7. Bình phương cả hai phía của phương trình:
\((x^4 - x^2 - 464)^2 = (- 44\sqrt{x^2 + 20})^2\)
\(x^8 - 2x^6 - 23x^4 + 912x^2 + 464^2 = 1936x^2 + 20\)
8. Rút gọn và sắp xếp phương trình:
\(x^8 - 2x^6 - 23x^4 + 1916x^2 + 464^2 - 20 = 0\)
9. Đây là một phương trình bậc tám, và giải nó có thể phức tạp. Bạn có thể sử dụng phần mềm máy tính hoặc các công cụ trực tuyến để tìm các nghiệm của phương trình này. Giải nghiệm này là một phương trình bậc cao và cần một giải thuật đặc biệt.
Cho phương trình: x2 – mx + m – 1 = 0 (1). Tìm m để phương trình (1) có hai nghiệm phân biệt x1 và x2 thoả mãn: x12 + 3x1x2 = 3x2 + 3m + 16.
giải giúp mình bài này với ạ, mình cảm ơn
Giải hệ phương trình : x2 -xy+y-7=0
x2+xy-2y=4(x-1)
Làm giúp mình với ạ
Giải phương trình
2x(x + 5) – (x – 3)2 = x2 + 6
Giúp em với ạ, em không biết giải phương trình tích huhuh;-;
\(\Leftrightarrow2x^2+10x-x^2+6x-9=x^2+6\)
=>16x-9=6
=>16x=15
hay x=15/16
\(PT\Leftrightarrow2x^2+10x-x^2+6x-9-x^2-6=0.\)
\(\Leftrightarrow16x-15=0.\\ \Leftrightarrow x=\dfrac{15}{16}.\)
Giải giúp em cái điều kiện của phương trình này với ạ...
I 8-X I = x2 + x đk : .................
Em cảm ơn các a.c.e trước ạ!
để \(\left|8-x\right|=8-x< =>8-x\ge0< =>x\le8\)
\(=>8-x=x^2+x< =>x^2+2x-8=0\)
\(< =>\left(x+1\right)^2-3^2=0< =>\left(x-2\right)\left(x+4\right)=0\)
\(=>\left[{}\begin{matrix}x=2\left(TM\right)\\x=-4\left(TM\right)\end{matrix}\right.\)
*để\(\left|8-x\right|=x-8< =>8-x< 0< =>x>8\)
\(=>x-8=x^2+x< =>x^2=-8\)(vô lí)
vậy x=2 hoặc x=-4
Cho phương trình : x² - 2(m-3) x + m² +3 = 0.Tìm m để phương trình có 2 nghiệm phân biệt x1, x2 thoã mãn x1² + x2² = 86
Làm ơn giải chi tiết giúp từng bước giúp e với, e thật sự kh hiểu bài này, đây là bài thi ạ 🥺
Δ=(2m-6)^2-4(m^2+3)
=4m^2-24m+36-4m^2-12=-24m+24
Để phương trình có hai nghiệm phân biệt thì -24m+24>0
=>m<1
x1^2+x2^2=36
=>(x1+x2)^2-2x1x2=36
=>(2m-6)^2-2(m^2+3)=36
=>4m^2-24m+36-2m^2-6-36=0
=>2m^2-24m-6=0
=>m^2-12m-3=0
=>\(m=6-\sqrt{39}\)
Cho phương trình x2 -5x +m = 0
a) Giải phương trình khi m=6.
b) Tìm m để phương trình có 2 nghiệm dương x1, x2 thoả mãn x1√x2 + x2√x1 = 6
(Giúp mình với ;-;)
â) thay m = 6 và phương trình ta đc
\(x^2-5x+6=0\)
\(\Leftrightarrow\left(x-2\right).\left(x-3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\x-3=0\end{matrix}\right.=>\left[{}\begin{matrix}x=2\\x=3\end{matrix}\right.\)
b.
Phương trình có 2 nghiệm khi: \(\Delta=25-4m\ge0\Rightarrow m\le\dfrac{25}{4}\)
Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=5\\x_1x_2=m\end{matrix}\right.\)
Pt có 2 nghiệm dương khi \(m>0\)
\(x_1\sqrt{x_2}+x_2\sqrt{x_1}=6\)
\(\Leftrightarrow x_1^2x_2+x_2^2x_1+2x_1x_2\sqrt{x_1x_2}=36\)
\(\Leftrightarrow x_1x_2\left(x_1+x_2\right)+2x_1x_2\sqrt{x_1x_2}=36\)
\(\Leftrightarrow5m+2m\sqrt{m}=36\)
Đặt \(\sqrt{m}=t>0\Rightarrow2t^3+5t^2-36=0\)
\(\Leftrightarrow\left(t-2\right)\left(2t^2+9t+18\right)=0\)
\(\Leftrightarrow t=2\Rightarrow\sqrt{m}=2\)
\(\Rightarrow m=4\)
(x2-3x+2)(x2-9x+20) giúp mik giải phương trình này với dụng mình tick cho nha
Bài 2 Cho phương trình x2-2(m+1) x+2m+1=0
A) Tìm m để phương trình có hai nghiệm trái dấu
B ) Tìm m để phương trình có hai nghiệm nằm cùng phía với trục Oy
Ai giải hộ mình bài này được ko ạ
a.
Phương trình có 2 nghiệm trái dấu khi và chỉ khi:
\(ac< 0\Leftrightarrow1.\left(2m+1\right)< 0\)
\(\Leftrightarrow m< -\dfrac{1}{2}\)
b.
Phương trình có 2 nghiệm nằm cùng phía trục Oy \(\Leftrightarrow\) phương trình có 2 nghiệm cùng dấu
\(\Leftrightarrow\left\{{}\begin{matrix}\Delta'=\left(m+1\right)^2-\left(2m+1\right)>0\\x_1x_2=2m+1>0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m\ne0\\m>-\dfrac{1}{2}\end{matrix}\right.\)
Cho phương trình x^2+ (m-1) x+5m-6=0
a) giải phương trình khi m =-2
b) tìm m để 2 nghiệm x1 và x2 thoả mãn hệ thức 4x1+ 3x2=1
mn giúp em với ạ!!!
a) thay m= -2 vào pt , ta có :
→x2 +( -2-1)x+5.(-2)-6=0
↔x2-3x-16=0
Δ=(-3)2-4.1.(-16)
Δ=9+64
Δ=73 > 0
vì delta > 0 nên ta có 2 nghiệm phân biệt
x1=\(\dfrac{3+\sqrt{73}}{2.1}\)=\(\dfrac{3+\sqrt{73}}{2}\)
x2=\(\dfrac{3-\sqrt{73}}{2}\)
b)Hệ thức vi et :
x1+x2=\(\dfrac{-b}{a}=\dfrac{-\left(m-1\right)}{1}=-m+1\)(1)
x1.x2=\(\dfrac{c}{a}=\dfrac{5m-6}{1}=5m-6\)(2)
Ta có : 4x1+3x2=1(3)
Từ (1) và (3) , ta có hệ pt
\(\left\{{}\begin{matrix}x1+x2=-m+1
\\4x1+3x2=1\end{matrix}\right.
\)
\(\left\{{}\begin{matrix}3x_1+3x_2=-3m+3\\4x_1+3x_2=1\end{matrix}\right.\)
\(\left\{{}\begin{matrix}x_1=3m-2\\x_1+x_2=-m+1\end{matrix}\right.\)
\(\left\{{}\begin{matrix}x_1=3m-2\\x_2=-4m+3\end{matrix}\right.\)
Ta thay x1 x2 vào (2) , ta có :
➝(3m-2).(-4m+3)=5m-6
↔-12m2+12m=0
↔12m(-m+1)=0
-> 12m=0 -> m=0
-> -m+1=0 ->m=1
Vậy m = 0 và m =1 thì sẽ tm hệ thức