Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
3013 thaodoanmit
Xem chi tiết
Hồ Lê Thiên Đức
Xem chi tiết
Trần Tuấn Hoàng
24 tháng 5 2022 lúc 10:15

\(x,y,z>0\)

Áp dụng BĐT Caushy cho 3 số ta có:

\(x^3+y^3+z^3\ge3\sqrt[3]{x^3y^3z^3}=3xyz\ge3.1=3\)

\(P=\dfrac{x^3-1}{x^2+y+z}+\dfrac{y^3-1}{x+y^2+z}+\dfrac{z^3-1}{x+y+z^2}\)

\(=\dfrac{\left(x^3-1\right)^2}{\left(x^2+y+z\right)\left(x^3-1\right)}+\dfrac{\left(y^3-1\right)^2}{\left(x+y^2+z\right)\left(y^3-1\right)}+\dfrac{\left(z^3-1\right)^2}{\left(x+y+z^2\right)\left(x^3-1\right)}\)

Áp dụng BĐT Caushy-Schwarz ta có:

\(P\ge\dfrac{\left(x^3+y^3+z^3-3\right)^2}{\left(x^2+y+z\right)\left(x^3-1\right)+\left(x+y^2+z\right)\left(y^3-1\right)+\left(x+y^2+z\right)\left(y^3-1\right)}\)

\(\ge\dfrac{\left(3-3\right)^2}{\left(x^2+y+z\right)\left(x^3-1\right)+\left(x+y^2+z\right)\left(y^3-1\right)+\left(x+y^2+z\right)\left(y^3-1\right)}=0\)

\(P=0\Leftrightarrow x=y=z=1\)

Vậy \(P_{min}=0\)

nguyễn minh quý
Xem chi tiết
cong chua gia bang
Xem chi tiết
OoO Kún Chảnh OoO
Xem chi tiết
✓ ℍɠŞ_ŦƦùM $₦G ✓
29 tháng 2 2016 lúc 6:34

\(\frac{x}{y}=\frac{2}{3}\Rightarrow\frac{x}{2}=\frac{y}{3};\frac{y}{z}=\frac{1}{4}\Rightarrow\frac{y}{1}=\frac{z}{4}\Rightarrow\frac{y}{3}=\frac{z}{12}\)

=>x=2k;y=3k;z=12k

thay vào ta có:

\(\frac{1}{2k}+\frac{1}{3k}+\frac{1}{12k}=1\)

\(\Rightarrow\frac{1}{2}.\frac{1}{k}+\frac{1}{3}.\frac{1}{k}+\frac{1}{12}.\frac{1}{k}=1\)

\(\Rightarrow\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{12}\right)\frac{1}{k}=1\)

\(\Rightarrow\frac{11}{12}.\frac{1}{k}=1\Rightarrow\frac{1}{k}=\frac{1}{\frac{11}{12}}\)

\(\Rightarrow x=\frac{11}{6};y=\frac{11}{4};z=11\)

Edogawa Conan
30 tháng 8 2016 lúc 21:05

\(\frac{x}{y}=\frac{2}{3}\Rightarrow\frac{x}{2}=\frac{y}{3};\frac{y}{z}=\frac{1}{4}\Rightarrow\frac{y}{1}=\frac{z}{4}\Rightarrow\frac{y}{3}=\frac{z}{12}\)

\(\Rightarrow x=2k;y=3k;z=12k\)

Thay vào ta có:

\(\frac{1}{2k}+\frac{1}{3k}+\frac{1}{12k}=1\)

\(\Rightarrow\frac{1}{2}.\frac{1}{k}+\frac{1}{3}.\frac{1}{k}+\frac{1}{12}.\frac{1}{k}=1\)

\(\Rightarrow\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{12}\right)\frac{1}{k}=1\)
\(\Rightarrow\frac{11}{12}.\frac{1}{k}=1\Rightarrow\frac{1}{k}=\frac{1}{\frac{11}{12}}\)

\(\Rightarrow x=\frac{11}{6};y=\frac{11}{4};z=11\)

nguyenquocngoc
Xem chi tiết
mình yêu công chúa giá b...
Xem chi tiết
OoO Kún Chảnh OoO
Xem chi tiết
T. M
Xem chi tiết
Akai Haruma
15 tháng 12 2022 lúc 19:45

Lời giải:

Áp dụng TCDTSBN:

$\frac{x}{y}=\frac{y}{z}=\frac{z}{x}=\frac{x+y+z}{y+z+x}=1$

$\Rightarrow x=y; y=z; z=x\Rightarrow x=y=z$

Khi đó:

$|x+y|=|z-1|$

$\Leftrightarrow |2x|=|x-1|$

$\Rightarrow 2x=x-1$ hoặc $2x=-(x-1)$

$\Rightarrow x=-1$ hoặc $x=\frac{1}{3}$ (đều thỏa mãn)

Vậy $(x,y,z)=(-1,-1,-1)$ hoặc $(\frac{1}{3}, \frac{1}{3}, \frac{1}{3})$