Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Việt Bách
Xem chi tiết
Akai Haruma
10 tháng 9 2023 lúc 0:01

OOOOOOO PƠ Fuck
Xem chi tiết
Nguyễn Mạnh Tùng
8 tháng 11 2021 lúc 18:45

so 2 phai ko

Khách vãng lai đã xóa
trwsst
16 tháng 10 2022 lúc 8:29

hỏi cô mày ra đáp án liền tao thề:o

Quyên Bùi Hà
Xem chi tiết

a)Giả sử tồn tại số nguyên n sao cho \(n^2+2002\)là số chình phương.

\(\Rightarrow n^2+2002=a^2\left(a\inℕ^∗\right)\)

\(\Rightarrow a^2-n^2=2002\)

\(\Rightarrow a^2+an-an-n^2=2002\)

\(\Rightarrow a\left(a+n\right)-n\left(a+n\right)=2002\)

\(\Rightarrow\left(a-n\right)\left(a+n\right)=2002\)

Mà \(2002⋮2\)\(\Rightarrow\orbr{\begin{cases}a-n⋮2\\a+n⋮2\end{cases}\left(1\right)}\)

Ta có : \(\left(a+n\right)-\left(a-n\right)=-2n\)

\(\Rightarrow\)\(a-n\)và \(a+n\)có cùng tính chẵn lẻ \(\left(2\right)\)

Từ \(\left(1\right)\)và \(\left(2\right)\)\(\Rightarrow\hept{\begin{cases}a-n⋮2\\a+n⋮2\end{cases}}\)

Vì 2 là số nguyên tố \(\Rightarrow\left(a-n\right)\left(a+n\right)⋮4\)

mà 2002 không chia hết cho 4

\(\Rightarrow\)Mâu thuẫn

\(\Rightarrow\)Điều giả sử là sai

\(\Rightarrow\)Không tồn tại số nguyên n thỏa mãn đề bài

Khách vãng lai đã xóa
Vân Lê
Xem chi tiết
Nguyễn Việt Bách
Xem chi tiết
Akai Haruma
9 tháng 9 2023 lúc 23:49

Lời giải:

Đặt tổng trên là $A$.

Với $n=1$ thì $2^n+3^n+4^n=9$ là scp (thỏa mãn)

Xét $n\geq 2$. Khi đó:

$2^n\equiv 0\pmod 4; 4^n\equiv 0\pmod 4$

$\Rightarrow A=2^n+3^n+4^n\equiv 3^n\equiv (-1)^n\pmod 4$

Vì 1 scp khi chia 4 chỉ có thể có dư là $0$ hoặc $1$ nên $n$ phải là số chẵn.

Đặt $n=2k$ với $k$ nguyên dương.

Khi đó: $A=2^{2k}+3^{2k}+4^{2k}\equiv (-1)^{2k}+0+1^{2k}\equiv 2\pmod 3$
Một scp khi chia 3 chỉ có thể có dư là 0 hoặc 1 nên việc chia 3 dư 2 như trên là vô lý

Vậy TH $n\geq 2$ không thỏa mãn. Tức là chỉ có 1 giá trị $n=1$ thỏa mãn.

 

soyeon_Tiểu bàng giải
Xem chi tiết
Kim Ngân Nguyễn Thị
Xem chi tiết
Suzanna Dezaki
15 tháng 1 2021 lúc 18:33

undefined

Nguyễn Viết Gia Vỹ
Xem chi tiết
Lê Định
27 tháng 9 lúc 19:54

Rffsdffdsff

Nguyễn Trần Duy Thiệu
Xem chi tiết
Nguyễn Linh Chi
3 tháng 4 2020 lúc 16:38

1. Câu hỏi của Đình Hiếu - Toán lớp 7 - Học toán với OnlineMath

Khách vãng lai đã xóa