Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Mai Tiến Đỗ
Xem chi tiết
Big City Boy
Xem chi tiết
Big City Boy
Xem chi tiết
Big City Boy
Xem chi tiết
Nguyễn Lê Phước Thịnh
17 tháng 5 2023 lúc 14:53

Mở ảnh

Trang Triệu
Xem chi tiết
Khiêm Nguyễn Gia
Xem chi tiết
Lê Song Phương
17 tháng 8 2023 lúc 13:59

Ta thấy \(2x^2< 4\) \(\Leftrightarrow x^2< 2\) \(\Leftrightarrow x^2=1\) (do \(x\ne0\))

Thế vào pt đề bài, ta có \(3+\dfrac{y^2}{4}=4\) 

\(\Leftrightarrow\dfrac{y^2}{4}=1\)

\(\Leftrightarrow y^2=4\)

\(\Leftrightarrow y=\pm2\)

Vậy, các cặp số (x; y) thỏa ycbt là \(\left(1;2\right);\left(-1;-2\right);\left(1;-2\right);\left(-1;2\right)\)

 

THIÊN ÂN
17 tháng 8 2023 lúc 13:38

a

Bùi Minh Anh
Xem chi tiết
alibaba nguyễn
4 tháng 11 2017 lúc 14:58

Cô Huyền giải nhầm rồi.

\(\left(x+1\right)^4-\left(y+1\right)^2=y^2-x^4\)

\(\Leftrightarrow y^2+\left(y+1\right)^2=x^4+\left(x+1\right)^4\)

\(\Leftrightarrow y^2+y=x^4+2x^3+3x^2+2x\)

\(\Leftrightarrow y^2+y+1=\left(x^2+x\right)^2+2\left(x^2+x\right)+1=\left(x^2+x+1\right)^2\)là số chính phương

Xét \(y\ge0\)

\(\Rightarrow y^2< y^2+y+1\le\left(y+1\right)^2\)

\(\Rightarrow y^2+y+1=\left(y+1\right)^2\)

\(\Leftrightarrow y=0\)

\(\Rightarrow\orbr{\begin{cases}x=0\\x=-1\end{cases}}\)

Tương tự cho trường hợp còn lại

Cô Hoàng Huyền
3 tháng 11 2017 lúc 9:56

\(\left(x+1\right)^4-\left(y+1\right)^2=y^2-x^4\)

\(\Leftrightarrow x^4+2x^2+1-y^2-2y-1=y^2-x^4\)\(\Leftrightarrow2x^4+2x^2-2y^2-2y=0\)

\(\Leftrightarrow x^4+x^2-y^2-y=0\Leftrightarrow\left(x^4-y^2\right)+\left(x^2-y\right)=0\)

\(\Leftrightarrow\left(x^2-y\right)\left(x^2+y+1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x^2-y=0\\x^2+y+1=0\end{cases}}\)

TH1: y = x2 . Vậy ta có cặp (x;y) thỏa mãn là (k; k2) (k là số nguyên)

TH2: y = - x2 - 1. Vậy ta có cặp (x;y) thỏa mãn là (k; - k2 - 1) (k là số nguyên)

Tiến Nguyễn Minh
Xem chi tiết
Nguyễn Hoàng Dũng
Xem chi tiết
Aquarius_Love
17 tháng 4 2017 lúc 12:58

mọi người t ủng hộ mk nha