\(x\left(x^2+x+1\right)=4^y-1\)
\(\Leftrightarrow x^3+x^2+x+1=4^y\)
\(\Leftrightarrow\left(x+1\right)\left(x^2+1\right)=4^y\)( 1 )
Do x,y \(\in\)Z . Từ ( 1 )\(\Rightarrow x,y\ge0\)
Nếu x = 0 \(\Rightarrow\)y = 0 ( thỏa mãn )
Nếu x > 0 \(\Rightarrow\)y > 0 \(\Rightarrow\)x + 1 chẵn
Đặt x = 2k + 1 ( k \(\in\)N )
( 1 ) trở thành : \(\left(2k+2\right)\left(4k^2+4k+2\right)=4^y\)
\(\Leftrightarrow\left(k+1\right)\left(2k^2+2k+1\right)=4^{y-1}\)
Vì \(2k^2+2k+1\)là số lẻ mà ước lẻ của \(4^{y-1}\)chỉ có 1
\(\Rightarrow2k^2+2k+1=1\Rightarrow k=0\)
\(\Rightarrow x=1\Rightarrow y=1\)( t/m )
Vậy PT đã cho có nghiệm ( x ;y ) là ( 1 ; 1 ) ; (0 ; 0 )