Tìm GTNN của
\(A=4x+\frac{1}{4x}-\frac{4\sqrt{x}+3}{x+1}+2016\) với x>0
tìm GTNN
A= 4x + \(\frac{1}{4x}-\frac{4\sqrt{x}+3}{x+1}+2016\)với x>0
Áp dụng bđt cô si với 2 số dương 4x và 1/4x ta có: 4x+1/4x ≥ 2(1)
Đặt (4√x +3)/ (x+1) =B ; √x =t => x=t^2
ta có : B(t^2 +1) = 4t+3
<=>Bt^2 -4t+B-3=0
Xét delta =b^2 -4ac = 16-4B(B-3)= -4B^2 +12B+16 ≥ 0(*) (Để phương trình có gtnn thì pt phải có nghiệm nên delta ≥ 0)
Từ (*) => B^2 -3B-4 ≤ 0
<=> (B-4)(B+1) ≤ 0
=> -1 ≤ B ≤ 4
=>-B ≥ -4(2)
TỪ (1) và (2) => A ≥ 2+(-4)+2016=2014
Dấu = xảy ra <=> 4x=1/4x và B=4 (tự giải tìm x , ta sẽ được x = 1/4)
Xét \(B=\frac{x+1}{4\sqrt{x}+3}\Leftrightarrow16B=\frac{16x+16}{4\sqrt{x}+3}.\)\(=\frac{\left(4\sqrt{x}+3\right)\left(4\sqrt{x}-3\right)+25}{4\sqrt{x}+3}\)
\(=4\sqrt{x}-3+\frac{25}{4\sqrt{x}+3}=4\sqrt{x}+3+\frac{25}{4\sqrt{x}+3}-6\)
Áp dụng BĐT Cauchy
\(16B\ge2\sqrt{25}-6=4\Leftrightarrow B\ge\frac{1}{4}\)
\(\Rightarrow-\frac{4\sqrt{x}+3}{x+1}\ge-4\)
Áp dụng bđt Cauchy
\(\Rightarrow A\ge2\sqrt{\frac{4x.1}{4x}}-4+2016=2014\)
Vậy Min A=2014 khi x=1/4
Tìm GTNN của biểu thức: \(A=4x+\frac{1}{4x}-\frac{4\sqrt{x}+3}{x+1}+2016\) với x > 0
(Đắc Lắc)
Tìm GTNN của biểu thức \(A=4x+\frac{1}{4x}-\frac{4\sqrt{x}+3}{x+1}+2016\) (vói \(x>0\)).
Áp dụng bất đẳng thức AM-GM ta có :
\(4x+\frac{1}{4x}\ge2\sqrt{4x\cdot\frac{1}{4x}}=2\)
=> \(A\ge2-\frac{4\sqrt{x}+3}{x+1}+2016\)
=> \(A\ge4-\frac{4\sqrt{x}+3}{x+1}+2014\)
=> \(A\ge\frac{4x-4\sqrt{x}+1}{x+1}+2014=\frac{\left(2\sqrt{x}-1\right)^2}{x+1}+2014\ge2014\)
hay \(A\ge2014\). Đẳng thức xảy ra <=> \(\hept{\begin{cases}4x=\frac{1}{4x}\\2\sqrt{x}-1=0\end{cases}}\Rightarrow x=\frac{1}{4}\)
Vậy GTNN của A = 2014 <=> x = 1/4
Tìm GTNN của biểu thức: \(A=4x+\frac{1}{4x}-\frac{4\sqrt{x}+3}{x+1}+2020\) với x>0
Tìm giá trị nhỏ nhất của biểu thức : \(A=4x+\frac{1}{4x}-\frac{4\sqrt{x}+3}{x+1}+2016\) với x>0
Giaỉ giúp mình nha
Áp dụng bđt cosi ta được \(4x+\frac{1}{4x}\ge2\sqrt{4x.\frac{1}{4x}}=2\)
\(x+\frac{1}{4}\ge2\sqrt{\frac{1}{4}x}=\sqrt{x}\Leftrightarrow4x+1\ge4\sqrt{x}\Leftrightarrow4\left(x+1\right)\ge4\sqrt{x}+3\Leftrightarrow-\left(4\sqrt{x}+3\right)\ge-4\left(x+1\right)\Leftrightarrow-\frac{\left(4\sqrt{x}+3\right)}{x+1}\ge-4\)Khi đó \(A\ge2-4+2016=2014\)
Dấu = xảy ra khi x=1/4
Tìm GTNN của biểu thức B = x(x-3)(x+1)(x+4)
Tìm GTNN của A = \(\frac{x^2-4x+1}{x^2}\)
Tìm cả GTNN và GTLN của các biểu thức sau:
B = \(\frac{1}{2+\sqrt{4-x^2}}\)
C = \(\frac{1}{3-\sqrt{1-x^2}}\)
D = \(\sqrt{-x^2+4x+5}\)
Tính giá trị nhỏ nhất của biểu thức A:
\(A=4x+\frac{1}{4x}-\frac{4\sqrt{x}}{x+1}+2016\) với x>0
1. Tìm GTNN của Q =\(\frac{x+16}{\sqrt{x}+3}\)
2. Tìm GTNN của M =\(2x^2-8x+\sqrt{x^2-4x+5}+6\)
3. Cho biểu thức : A =\(\frac{x^2-x+2}{x^2}:\sqrt{\left(\frac{x^4+4}{x^2}\right)^2+6\left(\frac{x^2+2}{x}\right)^2-15}\)với x khác 0.
a) Rút gọn A
b) Tìm x để A có GTLN. Tìm GTLN đó.
1.(√x -2)^2 ≥ 0 --> x -4√x +4 ≥ 0 --> x+16 ≥ 12 +4√x --> (x+16)/(3+√x) ≥4
--> Pmin=4 khi x=4
2. Đặt \(\sqrt{x^2-4x+5}=t\ge1\)1
=> M=2x2-8x+\(\sqrt{x^2-4x+5}\)+6=2(t2-5)+t+6
<=> M=2t2+t-4\(\ge\)2.12+1-4=-1
Mmin=-1 khi t=1 hay x=2
1. Tìm GTNN của Q =\(\frac{x+16}{\sqrt{x}+3}\)
2. Tìm GTNN của M =\(2x^2-8x+\sqrt{x^2-4x+5}+6\)
3. Cho biểu thức : A =\(\frac{x^2-x+2}{x^2}:\sqrt{\left(\frac{x^4+4}{x^2}\right)^2+6\left(\frac{x^2+2}{x}\right)^2-15}\)với x khác 0.
a) Rút gọn A
b) Tìm x để A có GTLN. Tìm GTLN đó.