Cho 2 số x,y thỏa mãn x+y=2 và \(x^2+y^2=10\).Tính giá trị biểu thức \(M=x^3+y^3\)
Cho hai số, y thỏa mãn: x+y=3 và x^2+y^2=5. Tính giá trị biểu thức: M=x^3+y^3
`x+y=3`
`<=>(x+y)^3=9`
`<=>x^2+2xy+y^2=9`
`<=>2xy+5=9`
`<=>2xy=4`
`<=>xy=2`
`<=>x^2-xy+y^2=3`
`=>M=(x+y)(x^2-xy+y^2)`
`=3.3`
`=9`
x+y=3
⇔(x+y)2=9
⇔x2+2xy+y2=9
⇔2xy+5=9(Vì x2+y2=5)
⇔2xy=4
⇔xy=2
Có : x2+y2=5
\(\Rightarrow\)x2+y2-xy =3
Có M=x3+y3
\(\Rightarrow\)M=(x+y)(x2−xy+y2)
\(\Rightarrow\)M=3.3
\(\Rightarrow\)M=9
1)cho 2 số x,y thỏa mãn xy+x+y=7 và x^2y +xy^2= 10
tính giá trị biểu thức A= x^3 +y^3
2)tìm bộ 3 x,y,z thỏa mãn:
x-y-z+3=0 và x^2-y^2-z^2 =1
các bạn làm giúp m nha!!!
Cho 2 số thực x,y thỏa mãn x+y=5 và x.y=-2.Tính giá trị biểu thức P=x^3/y^2+y^3/x^2+2020
\(P=\dfrac{x^3}{y^2}+\dfrac{y^3}{x^2}+2020=\dfrac{x^5+y^5}{\left(xy\right)^2}+2020=\dfrac{\left(x^3+y^3\right)\left(x^2+y^2\right)-\left(xy\right)^2\left(x+y\right)}{\left(-2\right)^2}\)
\(=\dfrac{\left[\left(x+y\right)^3-3xy\left(x+y\right)\right]\left[\left(x+y\right)^2-2xy\right]-\left(-2\right)^2.5}{4}\)
\(=\dfrac{\left(-8+6.5\right)\left(25+4\right)-20}{4}=...\)
Cho hai số x,y thỏa mãn \(x+y=2,
x^2+y^2=10\)
Tính giá trị biểu thức: \(M=x^3+y^3.\)
x + y = 2
=> ( x + y )2 = 4
<=> x2 + 2xy + y2 = 4
<=> 2xy + 10 = 4
<=> 2xy = -6
<=> xy = -3
Ta có : M = x3 + y3 = ( x + y )( x2 - xy + y2 ) = 2( 10 + 3 ) = 26
Ta có : \(x+y=2\)
\(\Rightarrow\left(x+y\right)^2=4\)
\(\Rightarrow x^2+y^2+2xy=4\)
Mà \(x^2+y^2=10\)
\(\Rightarrow10+2xy=4\)
\(\Rightarrow2xy=-6\)
\(\Rightarrow xy=-3\)
\(\Rightarrow x^3+y^3=\left(x+y\right)\left(x^2-xy+y^2\right)=2\left(10+3\right)=2.13=26\)
Vậy \(x^3+y^3=26\)
Ta có:\(x+y=2\)
\(\Rightarrow\left(x+y\right)^2=4\)
\(\Rightarrow x^2+2xy+y^2=4\)
\(\Rightarrow10+2xy=4\)
\(\Rightarrow2xy=-6\)
\(\Rightarrow xy=-3\)
Ta có:
\(x^3+y^3=\left(x+y\right)\left(x^2-xy+y^2\right)\)
\(=2\left(10+3\right)\)
\(=26\)
Cho hai số thỏa mãn xy+x+y=7 và x2y+xy2=10 .Tính giá trị biểu thức A= x3+y3
cho hai số thực x,y thỏa mãn x3-3xy2=10 và y3-3x2y=30 . Tính giá trị biểu thức P=x2+y2
Bài 1: Tính giá trị biểu thức
( x - 1 )( x - 2 )(1 + x + x^2 )( 4 + 2x + x^2) với x = 1
Bài 2: Hai số x và y thỏa mãn điều kiện sau
x - y = -3 ; xy = 10
Tính giá trị biểu thức
P = x^3 - 3x^2y + 3y^2 - y^3
mình hỏi vs 3y^2 là 3xy^2 phải không hay chỉ là 3y^2
Bài 2: \(\hept{\begin{cases}x-y=-3\\x=\frac{10}{y}\end{cases}\Rightarrow}\)\(\frac{10}{y}-y=-3\Leftrightarrow y^2-3y-10=0\Leftrightarrow\orbr{\begin{cases}y=5\Rightarrow x=2\\y=-2\Rightarrow x=-5\end{cases}}\)
*Với x=2;y=5 =>P=-102
*Với x=-5;y=-2 =>P=45
Bài 1.
\(\left(x-1\right)\left(x-2\right)\left(1+x+x^2\right)\left(4+2x+x^2\right)\)
Thay x=1 ta được:
\(0.\left(x-2\right)\left(1+x+x^2\right)\left(4+2x+x^2\right)=0\)
Vậy GTBT=0
cho x,y thỏa mãn x+y=3 và x.y=10 tính giá trị các biểu thức sau
A=x2-2xy+y2
B=x^2+y^2
C=x^3+y^3
Ta có:
A=x2-2xy+y2+4xy-4xy
=(x+y)2-4xy
=9-40
=-31
B=x2+y2+2xy-2xy
=(x+y)2-2xy
=9-20
=-11
C=x3+y3
=(x+y)(x2-xy+y2)
=3.(-21)
=-63
Cho x,y là 2 số khác nhau thỏa mãn x^2+y=y^2+x. Tính giá trị biểu thức A=x^3+y^3+3xy(x^2+y^2)+6x^2y^2(x+y)
Ta có: x2+y=y2+x
=>x2+y-y2+x=0
=>(x2-y2)-(x-y)=0
=>(x-y)(x+y)-(x-y)=0
=>(x-y)(x+y-1)=0
=>x-y=0 hoặc x+y-1=0
=>x+y=1(TH1 loại do x khác y)
ta có:A=x3+y3+3xy(x2+y2)+6x2y2(x+y)
=>A=(x+y)(x2-xy+y2)+3x3y+3xy3+6x2y2
=>A=x2-xy+y2+3x3y+3xy3+6x2y2
=>A=(x+y)2-3xy+3x2y(x+y)+3xy2(x+y)
=>A=1-3xy+3x2y+3xy2
=>A=1+3xy(-1+a+b)
=>A=1+3xy(-1+1)
=>A=1+3xy.0
=>A=1
Vậy A=1 khi x2+y=y2+x và x khác y.
Lê Đức Huy chép sai đề cau đầu kìa!