cho hpt mx + y=3 ,2x - y = 7
a. giải hpt trên vs m=3
b. tìm m để hpt có 1 nghiệm là (3;1)
c. tìm m để hpt có 1 nghiệm là (4;1)
1) cho hpt: \(\left\{{}\begin{matrix}x-3y=5-2m\\2x+y=3\left(m+1\right)\end{matrix}\right.\)
tìm m để hpt có nghiệm (\(x_0,y_0\)) t/m: \(x_0^2+y_0^2=9m\)
2) cho hpt: \(\left\{{}\begin{matrix}x+my=3m\\mx-y=m^2-2\end{matrix}\right.\)
tìm m để hpt có nghiệm duy nhất \(\left(x_0,y_0\right)\) t/m: \(x_0^2-2x_0-y_0>0\)
giúp mk vs mk cần gấp
Bài 1.
\(\left\{{}\begin{matrix}x-3y=5-2m\\2x+y=3\left(m+1\right)\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x-3y=5-2m\\6x+3y=9m+9\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}7x=7m+14\\x-3y=5-2m\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=m+2\\m+2-3y=5-2m\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=m+2\\-3y=-3m+3\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=m+2\\y=m-1\end{matrix}\right.\)
\(x_0^2+y_0^2=9m\)
\(\Leftrightarrow\left(m+2\right)^2+\left(m-1\right)^2=9m\)
\(\Leftrightarrow m^2+4m+4+m^2-2m+1-9m=0\)
\(\Leftrightarrow2m^2-7m+5=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}m=1\\m=\dfrac{5}{2}\end{matrix}\right.\) ( Vi-ét )
cho hpt { mx -2x = -1
2x + 3y = 1
1. giải hpt khi m =3
2. tìm m để hpt có nghiệm x = -1/2 vậy y = 2/3
3. tìm nghieemj của hpt theo m
1: Khi m=3 thì pt sẽ là:
\(\left\{{}\begin{matrix}3x-2x=-1\\2x+3y=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-1\\3y-2=1\end{matrix}\right.\Leftrightarrow\left(x,y\right)=\left(-1;1\right)\)
2: THeo đề, ta có:
\(\left\{{}\begin{matrix}m\cdot\dfrac{-1}{2}-2\cdot\dfrac{-1}{2}=-1\\2\cdot\dfrac{-1}{2}+3\cdot\dfrac{2}{3}=1\end{matrix}\right.\Leftrightarrow m\cdot\dfrac{-1}{2}=-3\)
hay m=6
Cho hpt: -2x+ y =m+1
mx -2y=m
a) Khi m=2 giải phương trình bằng phương pháp cộng
b) Tìm các giá trị của m để hpt (1) có nghiệm x=y
a, với m = 2 ta có hệ phương trình :
\(\left\{{}\begin{matrix}-2x+y=3\\2x-2y=2\end{matrix}\right.\) ⇔ \(\left\{{}\begin{matrix}-y=5\\2x-2y=2\end{matrix}\right.\) ⇔ \(\left\{{}\begin{matrix}y=-5\\2x+10=2\end{matrix}\right.\) ⇔ \(\left\{{}\begin{matrix}y=-5\\2x=-8\end{matrix}\right.\) ⇔ \(\left\{{}\begin{matrix}y=-5\\x=-4\end{matrix}\right.\)
Vậy với m = 2 thì hệ phương trình trên có nghiệm là : ( x ; y ) = ( -4 ; -5 )
b, chx làm :(
1, cho hpt (m+1)x + y=4 và mx+y=2m
m là tham số .tìm m để hpt có nghiệm (x;y) thỏa mãn x+y =2
2, cho hpt 3x + (m-1)y=12 và (m-1)x +12y=24
a, tìm m để hpt có nghiệm duy nhất thỏa mãn x+y = -1
b, tìm m nguyên để hpt có nghiệm duy nhất là nghiệm nguyên
Cho hệ PT \(\hept{\begin{cases}mx+y=2m\\x+my=m+1\end{cases}}\)
a, giải hpt khi m= -1
b, tìm m để hpt vô nghiệm
c, tìm m để hpt có nghiệm duy nhất (x,y) thỏa mãn \(2x-3y=1\)
a, Khi \(m=-1\)ta có HPT : \(\hept{\begin{cases}-x+y=-2\\x-y=0\end{cases}}\)
=> HPT vô nghiệm
b, \(\hept{\begin{cases}mx+y=2m\\x+my=m+1\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}y=2m-mx\\x+m\left(2m-mx\right)=m+1\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}y=2m-mx\\\left(1-m^2\right)x=-2m^2+m+1\end{cases}}\)( * )
HPT vô nghiệm
<=> ( * ) vô nghiệm
\(\Leftrightarrow\hept{\begin{cases}1-m^2=0\\-2m^2+m+1\end{cases}}\ne0\)
<=> m = 1 hoặc m = -1 mà m khác 1 và -1/2
<=> m = -1
Cho hpt \(\hept{\begin{cases}mx+2y=1\\3x+\left(m+1\right)y=-1\end{cases}}\) với m là tham số
a Giải hpt với m =3
b Giải và biện luận hpt theo m
c Tìm gtri nguyên của m để hpt có nghiệm là số nguyên
Cho hệ phương trình {2x + y = 5m -1 và x - 2y=2 a) Giải HPT với m = 1 b) Tìm m để HPT có nghiệm ( x ; y) thoả mãn 2x - y = 3
cho hpt :\(\int^{2x-y=m}_{mx+\sqrt{2}y=m}\)
a; Giải hpt khi m=\(\sqrt{2}\)
b; Tìm m để hpt có nghiệm, vô nghiệm
cho hpt \(\hept{\begin{cases}mx+y=1\\x+my=2\end{cases}}\)
a, giải hpt khi m=3
b giải và biện luận hpt theo m
c tìm m để hpt có nghiệm (x; y) thỏa mãn x-y=1
d, tìm hệ thức liên hệ giữa x và y không phụ thuộc vào m