Cho A=1.4/2.3+2.5/3.4+3.6/4.5+...+98.101/99.100.CM 97<A<98
Cho N = 1.4/2.3 + 2.5/3.4 + 3.6/4.5 + ... + 98.101/99.100 . Chứng minh 97 < N < 98
Ta có 1.4/2.3=(2-1)(3+1)/2.3=1-1/2+1/3-1/2.3
2.5/3.4=(3-1)(4+1)/3.4=1-1/3+1/4-1/3.4
...
Suy ra N=(1-1/2+1/3-1/2.3)+(1-1/3+1/4-1/3.4)+....+(1-1/99+1/100-1/99.100)
N=98+1/100−1/2−1/2.3−1/3.4−....−1/99.100
Xét P=1/2.3+1/3.4+....+1/99.100
P= 1/2−1/3+1/3−1/4+.....+1/99−1100
P=1/2−1/100
Vậy N=98-1+1/50
N=97+1/50
Vậy 97<N<98(ĐPCM)
N=1.4/2.3+2.5/3.4+3.6/4.5+...+98.101/99.100 CMR 97<N<98
N= 1.4/2.3 + 2.5/3.4 +3.6/4.5 + .........+ 98.101/99.100 . Chứng minh rằng :97<N<98
Cho N=\(\frac{1.4}{2.3}+\frac{2.5}{3.4}+\frac{3.6}{4.5}+....+\frac{98.101}{99.100}\).Chứng minh 97<N<98
N = 1 - 2/2.3 + 1 - 2/3.4 +.....+ 1 - 2/99.100
= 98 - 2.(1/2.3 + 1/3.4 + ...... + 1/99.100)
= 98 - 2.(1/2-1/3+1/3-1/4+....+1/99-1/100)
= 98 - 2.(1/2-1/100)
= 98 - 2.49/100 = 98-49/50 < 98
Mà 49/50 < 1
=> N > 98-1 = 97
=> 97 < N < 98
Tk mk nha
Cho N =\(\dfrac{1.4}{2.3}+\dfrac{2.5}{3.4}+\dfrac{3.6}{4.5}+...+\dfrac{98.101}{99.100}\)Chứng minh 97<N<98
Ta có 1.4/2.3=(2-1)(3+1)/2.3=1-1/2+1/3-1/2.3
2.5/3.4=(3-1)(4+1)/3.4=1-1/3+1/4-1/3.4
...
Suy ra N=(1-1/2+1/3-1/2.3)+(1-1/3+1/4-1/3.4)+....+(1-1/99+1/100-1/99.100)
N=\(98+\dfrac{1}{100}-\dfrac{1}{2}-\dfrac{1}{2.3}-\dfrac{1}{3.4}-....-\dfrac{1}{99.100}\)
Xét P=\(\dfrac{1}{2.3}+\dfrac{1}{3.4}+....+\dfrac{1}{99.100}\)
P=\(\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+.....+\dfrac{1}{99}-\dfrac{1}{100}\)
P=\(\dfrac{1}{2}-\dfrac{1}{100}\)
Vậy N=98-1+\(\dfrac{1}{50}\)
N=\(97+\dfrac{1}{50}\)
Vậy 97<N<98(ĐPCM)
Cho \(N=\frac{1.4}{2.3}+\frac{2.5}{3.4}+\frac{3.6}{4.5}+...+\frac{98.101}{99.100}\)
Chứng minh : 97 < N < 98
Ta có công thức tổng quát của số hạng trong tổng trên có dạng:
\(x_n=\frac{n\left(n+3\right)}{\left(n+1\right)\left(n+2\right)}=\frac{n^2+3n+2-2}{n^2+3n+2}\)
\(=1-\frac{2}{n^2+3n+2}=1-\frac{2}{\left(n+1\right)\left(n+2\right)}\)
\(\Rightarrow\frac{1.4}{2.3}=1-\frac{2}{2.3}\)
\(\frac{2.5}{3.4}=1-\frac{2}{3.4}\)
\(\frac{3.6}{4.5}=1-\frac{2}{4.5}\)
....
\(\frac{98.101}{99.100}=1-\frac{2}{99.100}\)
\(\Rightarrow N=98-2\left(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{99.100}\right)\)
\(=98-2\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\right)\)
\(=98-2\left(\frac{1}{2}-\frac{1}{100}\right)\)
\(=98-1+\frac{1}{50}=97+\frac{1}{50}\)
Vậy 97 < N < 98
Cho \(N=\frac{1.4}{2.3}+\frac{2.5}{3.4}+\frac{3.6}{4.5}+...+\frac{98.101}{99.100}\)
Chứng minh : 97 < N < 98
Bạn tham khảo link này: https://h.vn/hoi-dap/question/537598.html
Cho N= 1.4/2.3 + 2.5/3.4 + 3.6/4.5 +...+ 97.100/98.99 + 98.101/99.100
Chứng minh N không phải là số tự nhiên.
N=\(\frac{1.4}{2.3}+\frac{2.5}{3.4}+\frac{3.6}{4.5}+....+\)\(\frac{98.101}{99.100}\)
N=\(\frac{1.2.3...98}{2.3.4...99}\)\(+\)\(\frac{4.5.6....101}{3.4.5....100}\)
N=\(\frac{1}{99}+\frac{101}{3}\)
N=\(\frac{3334}{99}\)
Cho N = 1.4/2.3 + 2.5/3.4 + 3.6/4.5 + ... + 98.101/ 99.100
Chứng minh N > 97
Giúp mình với. Giải chi tiết nhé. Ai nhanh mình tik
Công thức tổng quát:(n(n+3))/((n+1)(n+2))
=((n(n+3))/(n+1))-((n(n+3))/(n+2))
=n(1+2/(n+1) -1-1/(n+2))
=1-2/(n+1) +2/(n+2)
=>N=1-2/2+2/3+1-2/3+2/4+1-2/4+2/5+1-2/99+2/100
=97+2/100=4851/50