Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
trần xuân quyến
Xem chi tiết
Thắng Nguyễn
24 tháng 5 2018 lúc 9:02

Áp dụng BĐT Cauchy-Schwarz và Nesbitt ta có:

\(P\le\sqrt{\left(1+1+1\right)\left(3-\left(\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}\right)\right)}\)

\(\le\sqrt{\left(1+1+1\right)\left(3-\frac{3}{2}\right)}=\frac{3\sqrt{2}}{2}\)

trần xuân quyến
25 tháng 5 2018 lúc 20:00

rõ đi bạn mình không hiểu lắm

Tạ Duy Phương
Xem chi tiết
dinh huong
Xem chi tiết
dinh huong
Xem chi tiết
Lấp La Lấp Lánh
31 tháng 8 2021 lúc 17:48

Ta có: \(abc=b+2c\)

\(\Rightarrow a=\dfrac{b+2c}{bc}\)\(\Rightarrow a=\dfrac{1}{c}+\dfrac{2}{b}\)

Áp dụng bất đẳng thức: \(\dfrac{1}{a}+\dfrac{1}{b}\ge\dfrac{4}{a+b}\)

Ta có: \(\dfrac{3}{b+c-a}+\dfrac{4}{c+a-b}+\dfrac{5}{a+b-c}\)

\(=\dfrac{1}{b+c-a}+\dfrac{1}{c+a-b}+2\left(\dfrac{1}{b+c-a}+\dfrac{1}{a+b-c}\right)+3\left(\dfrac{1}{c+a-b}+\dfrac{1}{a+b-c}\right)\ge\dfrac{4}{b+c-a+c+a-b}+2.\dfrac{4}{b+c-a+a+b-c}+3.\dfrac{4}{c+a-b+a+b-c}=\dfrac{4}{2c}+2.\dfrac{4}{2b}+3.\dfrac{4}{2a}=\dfrac{2}{c}+\dfrac{4}{b}+\dfrac{6}{a}=2\left(\dfrac{1}{c}+\dfrac{2}{b}+\dfrac{3}{a}\right)=2\left(a+\dfrac{3}{a}\right)\ge2.2\sqrt{\dfrac{a.3}{a}}=4\sqrt{3}\)

(bất đẳng thức Cauchy cho 2 số dương)

\(ĐTXR\Leftrightarrow a=b=c=\sqrt{3}\)

 

Hoàng Phúc
Xem chi tiết
zZz Phan Cả Phát zZz
20 tháng 11 2016 lúc 22:04

Áp dụng định lý Pi-ta-go đó 

Bùi Thị Vân
21 tháng 11 2016 lúc 9:44

\(a,b,c\) là 3 cạnh của tam giác nên \(a,b,c>0\).
Chứng minh bất đẳng thức phụ 
Giả sử: \(\sqrt{2\left(a^2+b^2\right)}\ge a+b\)
            \(\Leftrightarrow2\left(a^2+b^2\right)\ge\left(a+b\right)^2\)
            \(\Leftrightarrow a^2+b^2\ge2ab\) ( luôn đúng)

Giả sử: \(\sqrt{2}\left(a+b+c\right)\le\sqrt{a^2+b^2}+\sqrt{b^2+c^2}+\sqrt{c^2+a^2}\)
             \(\Leftrightarrow2\left(a+b+c\right)\le\sqrt{2\left(a^2+b^2\right)}+\sqrt{2\left(b^2+c^2\right)}+\sqrt{2\left(a^2+c^2\right)}\)
Ta có: \(\sqrt{2\left(a^2+b^2\right)}+\sqrt{2\left(b^2+c^2\right)}+\sqrt{2\left(a^2+c^2\right)}\ge a+b+b+c+a+c\)
        \(\Rightarrow\sqrt{2\left(a^2+b^2\right)}+\sqrt{2\left(b^2+c^2\right)}+\sqrt{2\left(a^2+c^2\right)}\ge2\left(a+b+c\right)\)
Vậy: \(\sqrt{2}\left(a+b+c\right)\le\sqrt{a^2+b^2}+\sqrt{b^2+c^2}+\sqrt{c^2+a^2}\).
Ta chứng minh: \(\sqrt{a^2+b^2}+\sqrt{b^2+c^2}+\sqrt{c^2+a^2}< \sqrt{3}\left(a+b+c\right)\)
Áp dụng bất đẳng thức Bu  - nhi - a  ta có:
\(\left(\sqrt{a^2+b^2}+\sqrt{b^2+c^2}+\sqrt{a^2+c^2}\right)^2\le\left(1+1+1\right)\left(a^2+b^2+b^2+c^2+a^2+c^2\right)\)
                                                                                   \(=6\left(a^2+b^2+c^2\right)\)
Ta cần chứng minh: \(6\left(a^2+b^2+c^2\right)< \left(\sqrt{3}\left(a+b+c\right)\right)^2\)
                     \(\Leftrightarrow2\left(a^2+b^2+c^2\right)< \left(a+b+c\right)^2\)
                     \(\Leftrightarrow a^2+b^2+c^2< 2ab+2bc+2ac\)
                     \(\Leftrightarrow\left(a-b\right)^2+c^2< 2bc+2ac\)(1)
Do \(a,b,c\)là 3 cạnh của tam giác suy ra \(a-b< c\)
Gải sử \(a>b\) suy ra \(\left(a-b\right)^2< c^2\)
Thay vào (1 ) ta có \(c^2+c^2< 2bc+2ac\)
                            \(\Leftrightarrow2c^2< 2c\left(a+b\right)\)
                             \(\Leftrightarrow c< a+b\)( Đúng với a, b, c là 3 cạnh của tam giác)
Vậy BĐT đã được chứng minh.

Nguyễn Thị Thùy Dương
21 tháng 11 2016 lúc 9:52

Binh phuong 3 ve.

=> BDT  trai dc chung minh( de roi)

CM not  BDT phai ( SD  gi nhi?)

Hoàn Minh
Xem chi tiết
Akai Haruma
13 tháng 3 2022 lúc 0:59

1. Đặt $\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}=T$

$\frac{a}{b+c}> \frac{a}{a+b+c}$
$\frac{b}{c+a}> \frac{b}{c+a+b}$

$\frac{c}{a+b}> \frac{c}{a+b+c}$
$\Rightarrow T> \frac{a+b+c}{a+b+c}=1$ (đpcm) 

----

Xét hiệu:

$\frac{a}{b+c}-\frac{2a}{a+b+c}=\frac{-a(b+c-a)}{(b+c)(a+b+c)}<0$ theo BĐT tam giác

$\Rightarrow \frac{a}{b+c}< \frac{2a}{a+b+c}$ 

Tương tư: $\frac{b}{c+a}< \frac{2b}{c+a+b}$

$\frac{c}{a+b}< \frac{2c}{a+b+c}$

Cộng theo vế:

$T< \frac{2(a+b+c)}{a+b+c}=2$

 

$\frac{b}{a+c}

Akai Haruma
13 tháng 3 2022 lúc 1:02

2. 

Áp dụng BĐT AM-GM:

\(\frac{b+c}{a}.1\leq \frac{1}{4}(\frac{b+c}{a}+1)^2=\frac{(b+c+a)^2}{4a^2}\)

\(\Rightarrow \sqrt{\frac{a}{b+c}}\geq \frac{2a}{a+b+c}\)

Tương tự với các phân thức còn lại và cộng theo vế:
$\Rightarrow T\geq \frac{2(a+b+c)}{a+b+c}=2$

Dấu "=" xảy ra khi $b+c=a; c+a=b; a+b=c\Rightarrow a=b=c=0$ (vô lý)

Vậy dấu "=" không xảy ra, tức là $T>2>1$ (đpcm)

 

Nguyễn Anh Thơ
Xem chi tiết
Tiến Nguyễn Minh
Xem chi tiết
Phạm Thị Mai Anh
28 tháng 7 2020 lúc 20:23

Đặt ⎧⎪⎨⎪⎩a+b−c=xb+c−a=yc+a−b=z(x,y,z>0){a+b−c=xb+c−a=yc+a−b=z(x,y,z>0)

⇒⎧⎪ ⎪ ⎪⎨⎪ ⎪ ⎪⎩a=z+x2b=x+y2c=y+z2⇒{a=z+x2b=x+y2c=y+z2

⇒√a(1b+c−a−1√bc)=√2(z+x)2(1y−2√(x+y)(y+z))≥√x+√z2(1y−2√xy+√yz)=√x+√z2y−1√y⇒a(1b+c−a−1bc)=2(z+x)2(1y−2(x+y)(y+z))≥x+z2(1y−2xy+yz)=x+z2y−1y
Tương tự

⇒∑√a(1b+c−a−1√bc)≥∑√x+√z2y−∑1√y⇒∑a(1b+c−a−1bc)≥∑x+z2y−∑1y

⇒VT≥∑[x√x(y+z)]2xyz−∑√xy√xyz≥2√xyz(x+y+z)2xyz−x+y+z√xyz≐x+y+z√xyz−x+y+z√xyz=0⇒VT≥∑[xx(y+z)]2xyz−∑xyxyz≥2xyz(x+y+z)2xyz−x+y+zxyz≐x+y+zxyz−x+y+zxyz=0

(∑√xy≤x+y+z,x√x(y+z)≥2x√xyz)(∑xy≤x+y+z,xx(y+z)≥2xxyz)

dấu = ⇔x=y=z⇔a=b=c

Khách vãng lai đã xóa
๖²⁴ʱんuリ イú❄✎﹏
28 tháng 7 2020 lúc 20:26

Mai Anh ! cậu giỏi quá, cậu nè :33 

Khách vãng lai đã xóa
Chủ acc bị dính lời nguy...
28 tháng 7 2020 lúc 20:29

Ha~ Idol về mảng copy nay giỏi quá lè:33. Tác hại của việc copy paste là đây

Lần sai copy paste nhớ nhìn lại với chỉnh sửa đi nhá. Ko để này lộ liễu bôi bác lắm

Copy always mà vẫn 50k giải tuần đấy, ghê=))

Khách vãng lai đã xóa
Phan PT
Xem chi tiết