Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Khánh Chi
Xem chi tiết
Nguyễn Lê Phước Thịnh
22 tháng 7 2023 lúc 20:38

1: ΔOMN cân tại O 

mà OA vuông góc MN

nên OA là trung trực của MN

=>AM=AN

góc AMB=góc ANB=1/2*sđ cung AB=90 độ

Xét ΔAMB vuông tại M và ΔANB vuông tại N có

AB chung

AM=AN

=>ΔAMB=ΔANB

=>BM=BN

=>AM,AN là tiếp tuyến của (B;BM)

2: MH^2=AH*HB

=>4*MH^2=4*AH*HB

=>MN^2=4*AH*HB

3: góc MBA=90-60=30 độ

=>góc MBN=60 độ

=>ΔMBN đều

LuKenz
Xem chi tiết
Nguyễn Lê Phước Thịnh
26 tháng 8 2021 lúc 21:28

1: Xét (O) có 

ΔAMB nội tiếp đường tròn

AB là đường kính

Do đó: ΔAMB vuông tại M

Xét (O) có

ΔANB nội tiếp đường tròn
AB là đường kính

Do đó: ΔANB vuông tại N

Xét (O) có 

OH là một phần đường kính

MN là dây

OH\(\perp\)MN tại H

Do đó: H là trung điểm của MN

Xét ΔBMH vuông tại H và ΔBNH vuông tại H có 

BH chung

MH=NH

Do đó: ΔBMH=ΔBNH

Suy ra: BM=BN

hay BN\(\in\)(B;BM)

Xét (B;BM) có 

BM là bán kính

AM\(\perp\)BM tại M

Do đó: AM là tiếp tuyến của (B;BM)

Xét (B;BM) có

BN là bán kính

AN\(\perp\)BN tại N 

Do đó:AN là tiếp tuyến của (B;BN)

Ariels spring fashion
Xem chi tiết
Ariels spring fashion
Xem chi tiết
LuKenz
Xem chi tiết
duy đỗ nguyễn hải
Xem chi tiết
Nguyễn Ngọc Anh Minh
14 tháng 7 2023 lúc 9:20

A B M N H

1/

Xét (O) có

\(\widehat{AMB}=90^o\) (góc nội tiếp chắn nửa đường tròn) 

\(\Rightarrow AM\perp BM\) => AM là tiếp tuyến với (B) bán kính BM

Ta có

\(AB\perp MN\Rightarrow MH=NH\) (trong đường tròn đường kính vuông góc với dây cung thì chia đôi dây cung tại điểm giao cắt)

=> AB vừa là đường cao vừa là đường trung tuyến của tg BMN

=> tg BMN cân tại B (Trong tg đường cao xp từ 1 đỉnh đồng thời là đường trung tuyến thì tg đó là tg cân tại đỉnh đó)

=> BM=BN (cạnh bên tg cân) => \(N\in\left(B\right)\) => BN là đường kính của (B)

Xét (O) có

\(\widehat{ANB}=90^o\) (góc nội tiếp chắn nửa đường tròn) \(\Rightarrow AN\perp BN\)

=> AN là tiếp tuyến của (B)

2/

Ta có

\(MN=MH+NH\)

\(\Rightarrow MN^2=MH^2+NH^2+2.MH.NH\) (1)

Xét tg vuông AMB có

\(MH^2=AH.HB\) (trong tg vuông bình phương đường cao hạ từ đỉnh góc vuông bằng tích giữa các hình chiếu của 2 cạnh góc vuông trên cạnh huyền) (2)

\(\Rightarrow MH=\sqrt{AH.HB}\) (3)

Xét tg vuông ANB có

\(NH^2=AH.HB\) (lý do như trên) (4)

\(\Rightarrow NH=\sqrt{AH.HB}\) (5)

Từ (3) và (5) \(\Rightarrow MH.NH=\sqrt{AH.HB}.\sqrt{AH.HB}=AH.HB\) (6)

Thay (2) (4) (6) vào (1)

\(\Rightarrow MN^2=AH.HB+AH.HB+2.AH.HB=4.AH.HB\)

 

 

nguyễnquangminh
Xem chi tiết
Nguyễn Văn Tùng
7 tháng 12 2016 lúc 18:09

Cho đường tròn ( O,R) , đường kính AB và điểm M trên đường tròn O sao cho MAB= 60° . Kẻ dây MN vuông góc với AB tại H. Chứng minh AM và AN là các tiếp tuyến của (B,BM)

nguyễnquangminh
7 tháng 12 2016 lúc 18:11

Anh ơi giúp e với

Ánh Loan
Xem chi tiết
F.C
9 tháng 10 2017 lúc 14:05

Hình học lớp 9

Lệ Hoa
21 tháng 4 2017 lúc 21:38

Tự giải đi em

F.C
9 tháng 10 2017 lúc 14:26

Hình học lớp 9

Poon Phạm
Xem chi tiết
Thông
18 tháng 9 2016 lúc 16:51

Cần giải thì liên lạc face 0915694092 nhá

thảo
7 tháng 12 2017 lúc 21:06

giúp tôi trả lời tất cả câu hỏi đề này cái

MK1208
Xem chi tiết